[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/mm/numa_32.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. memory_present
  2. node_memmap_size_bytes
  3. get_memcfg_numa_flat
  4. propagate_e820_map_node
  5. allocate_pgdat
  6. alloc_remap
  7. remap_numa_kva
  8. calculate_numa_remap_pages
  9. init_remap_allocator
  10. initmem_init
  11. set_highmem_pages_init
  12. paddr_to_nid
  13. memory_add_physaddr_to_nid

/*
 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
 * August 2002: added remote node KVA remap - Martin J. Bligh 
 *
 * Copyright (C) 2002, IBM Corp.
 *
 * All rights reserved.          
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 * NON INFRINGEMENT.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/kexec.h>
#include <linux/pfn.h>
#include <linux/swap.h>
#include <linux/acpi.h>

#include <asm/e820.h>
#include <asm/setup.h>
#include <asm/mmzone.h>
#include <asm/bios_ebda.h>
#include <asm/proto.h>

struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);

/*
 * numa interface - we expect the numa architecture specific code to have
 *                  populated the following initialisation.
 *
 * 1) node_online_map  - the map of all nodes configured (online) in the system
 * 2) node_start_pfn   - the starting page frame number for a node
 * 3) node_end_pfn     - the ending page fram number for a node
 */
unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;


#ifdef CONFIG_DISCONTIGMEM
/*
 * 4) physnode_map     - the mapping between a pfn and owning node
 * physnode_map keeps track of the physical memory layout of a generic
 * numa node on a 64Mb break (each element of the array will
 * represent 64Mb of memory and will be marked by the node id.  so,
 * if the first gig is on node 0, and the second gig is on node 1
 * physnode_map will contain:
 *
 *     physnode_map[0-15] = 0;
 *     physnode_map[16-31] = 1;
 *     physnode_map[32- ] = -1;
 */
s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
EXPORT_SYMBOL(physnode_map);

void memory_present(int nid, unsigned long start, unsigned long end)
{
        unsigned long pfn;

        printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
                        nid, start, end);
        printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
        printk(KERN_DEBUG "  ");
        for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
                physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
                printk(KERN_CONT "%lx ", pfn);
        }
        printk(KERN_CONT "\n");
}

unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
                                              unsigned long end_pfn)
{
        unsigned long nr_pages = end_pfn - start_pfn;

        if (!nr_pages)
                return 0;

        return (nr_pages + 1) * sizeof(struct page);
}
#endif

extern unsigned long find_max_low_pfn(void);
extern unsigned long highend_pfn, highstart_pfn;

#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)

unsigned long node_remap_size[MAX_NUMNODES];
static void *node_remap_start_vaddr[MAX_NUMNODES];
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);

static unsigned long kva_start_pfn;
static unsigned long kva_pages;
/*
 * FLAT - support for basic PC memory model with discontig enabled, essentially
 *        a single node with all available processors in it with a flat
 *        memory map.
 */
int __init get_memcfg_numa_flat(void)
{
        printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");

        node_start_pfn[0] = 0;
        node_end_pfn[0] = max_pfn;
        e820_register_active_regions(0, 0, max_pfn);
        memory_present(0, 0, max_pfn);
        node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);

        /* Indicate there is one node available. */
        nodes_clear(node_online_map);
        node_set_online(0);
        return 1;
}

/*
 * Find the highest page frame number we have available for the node
 */
static void __init propagate_e820_map_node(int nid)
{
        if (node_end_pfn[nid] > max_pfn)
                node_end_pfn[nid] = max_pfn;
        /*
         * if a user has given mem=XXXX, then we need to make sure 
         * that the node _starts_ before that, too, not just ends
         */
        if (node_start_pfn[nid] > max_pfn)
                node_start_pfn[nid] = max_pfn;
        BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
}

/* 
 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
 * method.  For node zero take this from the bottom of memory, for
 * subsequent nodes place them at node_remap_start_vaddr which contains
 * node local data in physically node local memory.  See setup_memory()
 * for details.
 */
static void __init allocate_pgdat(int nid)
{
        char buf[16];

        if (node_has_online_mem(nid) && node_remap_start_vaddr[nid])
                NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
        else {
                unsigned long pgdat_phys;
                pgdat_phys = find_e820_area(min_low_pfn<<PAGE_SHIFT,
                                 max_pfn_mapped<<PAGE_SHIFT,
                                 sizeof(pg_data_t),
                                 PAGE_SIZE);
                NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
                memset(buf, 0, sizeof(buf));
                sprintf(buf, "NODE_DATA %d",  nid);
                reserve_early(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
        }
        printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
                nid, (unsigned long)NODE_DATA(nid));
}

/*
 * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
 * virtual address space (KVA) is reserved and portions of nodes are mapped
 * using it. This is to allow node-local memory to be allocated for
 * structures that would normally require ZONE_NORMAL. The memory is
 * allocated with alloc_remap() and callers should be prepared to allocate
 * from the bootmem allocator instead.
 */
static unsigned long node_remap_start_pfn[MAX_NUMNODES];
static void *node_remap_end_vaddr[MAX_NUMNODES];
static void *node_remap_alloc_vaddr[MAX_NUMNODES];
static unsigned long node_remap_offset[MAX_NUMNODES];

void *alloc_remap(int nid, unsigned long size)
{
        void *allocation = node_remap_alloc_vaddr[nid];

        size = ALIGN(size, L1_CACHE_BYTES);

        if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
                return 0;

        node_remap_alloc_vaddr[nid] += size;
        memset(allocation, 0, size);

        return allocation;
}

static void __init remap_numa_kva(void)
{
        void *vaddr;
        unsigned long pfn;
        int node;

        for_each_online_node(node) {
                printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
                for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
                        vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
                        printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
                                (unsigned long)vaddr,
                                node_remap_start_pfn[node] + pfn);
                        set_pmd_pfn((ulong) vaddr, 
                                node_remap_start_pfn[node] + pfn, 
                                PAGE_KERNEL_LARGE);
                }
        }
}

static unsigned long calculate_numa_remap_pages(void)
{
        int nid;
        unsigned long size, reserve_pages = 0;

        for_each_online_node(nid) {
                u64 node_kva_target;
                u64 node_kva_final;

                /*
                 * The acpi/srat node info can show hot-add memroy zones
                 * where memory could be added but not currently present.
                 */
                printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
                        nid, node_start_pfn[nid], node_end_pfn[nid]);
                if (node_start_pfn[nid] > max_pfn)
                        continue;
                if (!node_end_pfn[nid])
                        continue;
                if (node_end_pfn[nid] > max_pfn)
                        node_end_pfn[nid] = max_pfn;

                /* ensure the remap includes space for the pgdat. */
                size = node_remap_size[nid] + sizeof(pg_data_t);

                /* convert size to large (pmd size) pages, rounding up */
                size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
                /* now the roundup is correct, convert to PAGE_SIZE pages */
                size = size * PTRS_PER_PTE;

                node_kva_target = round_down(node_end_pfn[nid] - size,
                                                 PTRS_PER_PTE);
                node_kva_target <<= PAGE_SHIFT;
                do {
                        node_kva_final = find_e820_area(node_kva_target,
                                        ((u64)node_end_pfn[nid])<<PAGE_SHIFT,
                                                ((u64)size)<<PAGE_SHIFT,
                                                LARGE_PAGE_BYTES);
                        node_kva_target -= LARGE_PAGE_BYTES;
                } while (node_kva_final == -1ULL &&
                         (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid]));

                if (node_kva_final == -1ULL)
                        panic("Can not get kva ram\n");

                node_remap_size[nid] = size;
                node_remap_offset[nid] = reserve_pages;
                reserve_pages += size;
                printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of"
                                  " node %d at %llx\n",
                                size, nid, node_kva_final>>PAGE_SHIFT);

                /*
                 *  prevent kva address below max_low_pfn want it on system
                 *  with less memory later.
                 *  layout will be: KVA address , KVA RAM
                 *
                 *  we are supposed to only record the one less then max_low_pfn
                 *  but we could have some hole in high memory, and it will only
                 *  check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide
                 *  to use it as free.
                 *  So reserve_early here, hope we don't run out of that array
                 */
                reserve_early(node_kva_final,
                              node_kva_final+(((u64)size)<<PAGE_SHIFT),
                              "KVA RAM");

                node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT;
                remove_active_range(nid, node_remap_start_pfn[nid],
                                         node_remap_start_pfn[nid] + size);
        }
        printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
                        reserve_pages);
        return reserve_pages;
}

static void init_remap_allocator(int nid)
{
        node_remap_start_vaddr[nid] = pfn_to_kaddr(
                        kva_start_pfn + node_remap_offset[nid]);
        node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
                (node_remap_size[nid] * PAGE_SIZE);
        node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
                ALIGN(sizeof(pg_data_t), PAGE_SIZE);

        printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
                (ulong) node_remap_start_vaddr[nid],
                (ulong) node_remap_end_vaddr[nid]);
}

void __init initmem_init(unsigned long start_pfn,
                                  unsigned long end_pfn)
{
        int nid;
        long kva_target_pfn;

        /*
         * When mapping a NUMA machine we allocate the node_mem_map arrays
         * from node local memory.  They are then mapped directly into KVA
         * between zone normal and vmalloc space.  Calculate the size of
         * this space and use it to adjust the boundary between ZONE_NORMAL
         * and ZONE_HIGHMEM.
         */

        get_memcfg_numa();

        kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE);

        kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE);
        do {
                kva_start_pfn = find_e820_area(kva_target_pfn<<PAGE_SHIFT,
                                        max_low_pfn<<PAGE_SHIFT,
                                        kva_pages<<PAGE_SHIFT,
                                        PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT;
                kva_target_pfn -= PTRS_PER_PTE;
        } while (kva_start_pfn == -1UL && kva_target_pfn > min_low_pfn);

        if (kva_start_pfn == -1UL)
                panic("Can not get kva space\n");

        printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
                kva_start_pfn, max_low_pfn);
        printk(KERN_INFO "max_pfn = %lx\n", max_pfn);

        /* avoid clash with initrd */
        reserve_early(kva_start_pfn<<PAGE_SHIFT,
                      (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
                     "KVA PG");
#ifdef CONFIG_HIGHMEM
        highstart_pfn = highend_pfn = max_pfn;
        if (max_pfn > max_low_pfn)
                highstart_pfn = max_low_pfn;
        printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
               pages_to_mb(highend_pfn - highstart_pfn));
        num_physpages = highend_pfn;
        high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
#else
        num_physpages = max_low_pfn;
        high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
#endif
        printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
                        pages_to_mb(max_low_pfn));
        printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
                        max_low_pfn, highstart_pfn);

        printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
                        (ulong) pfn_to_kaddr(max_low_pfn));
        for_each_online_node(nid) {
                init_remap_allocator(nid);

                allocate_pgdat(nid);
        }
        remap_numa_kva();

        printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
                        (ulong) pfn_to_kaddr(highstart_pfn));
        for_each_online_node(nid)
                propagate_e820_map_node(nid);

        for_each_online_node(nid)
                memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));

        NODE_DATA(0)->bdata = &bootmem_node_data[0];
        setup_bootmem_allocator();
}

void __init set_highmem_pages_init(void)
{
#ifdef CONFIG_HIGHMEM
        struct zone *zone;
        int nid;

        for_each_zone(zone) {
                unsigned long zone_start_pfn, zone_end_pfn;

                if (!is_highmem(zone))
                        continue;

                zone_start_pfn = zone->zone_start_pfn;
                zone_end_pfn = zone_start_pfn + zone->spanned_pages;

                nid = zone_to_nid(zone);
                printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n",
                                zone->name, nid, zone_start_pfn, zone_end_pfn);

                add_highpages_with_active_regions(nid, zone_start_pfn,
                                 zone_end_pfn);
        }
        totalram_pages += totalhigh_pages;
#endif
}

#ifdef CONFIG_MEMORY_HOTPLUG
static int paddr_to_nid(u64 addr)
{
        int nid;
        unsigned long pfn = PFN_DOWN(addr);

        for_each_node(nid)
                if (node_start_pfn[nid] <= pfn &&
                    pfn < node_end_pfn[nid])
                        return nid;

        return -1;
}

/*
 * This function is used to ask node id BEFORE memmap and mem_section's
 * initialization (pfn_to_nid() can't be used yet).
 * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
 */
int memory_add_physaddr_to_nid(u64 addr)
{
        int nid = paddr_to_nid(addr);
        return (nid >= 0) ? nid : 0;
}

EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif


/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading