[funini.com] -> [kei@sodan] -> Kernel Reading

root/net/sched/cls_flow.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. addr_fold
  2. flow_get_src
  3. flow_get_dst
  4. flow_get_proto
  5. has_ports
  6. flow_get_proto_src
  7. flow_get_proto_dst
  8. flow_get_iif
  9. flow_get_priority
  10. flow_get_mark
  11. flow_get_nfct
  12. flow_get_nfct_src
  13. flow_get_nfct_dst
  14. flow_get_nfct_proto_src
  15. flow_get_nfct_proto_dst
  16. flow_get_rtclassid
  17. flow_get_skuid
  18. flow_get_skgid
  19. flow_get_vlan_tag
  20. flow_key_get
  21. flow_classify
  22. flow_perturbation
  23. flow_change
  24. flow_destroy_filter
  25. flow_delete
  26. flow_init
  27. flow_destroy
  28. flow_get
  29. flow_put
  30. flow_dump
  31. flow_walk
  32. cls_flow_init
  33. cls_flow_exit

/*
 * net/sched/cls_flow.c         Generic flow classifier
 *
 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/pkt_cls.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>

#include <net/pkt_cls.h>
#include <net/ip.h>
#include <net/route.h>
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
#include <net/netfilter/nf_conntrack.h>
#endif

struct flow_head {
        struct list_head        filters;
};

struct flow_filter {
        struct list_head        list;
        struct tcf_exts         exts;
        struct tcf_ematch_tree  ematches;
        struct timer_list       perturb_timer;
        u32                     perturb_period;
        u32                     handle;

        u32                     nkeys;
        u32                     keymask;
        u32                     mode;
        u32                     mask;
        u32                     xor;
        u32                     rshift;
        u32                     addend;
        u32                     divisor;
        u32                     baseclass;
        u32                     hashrnd;
};

static const struct tcf_ext_map flow_ext_map = {
        .action = TCA_FLOW_ACT,
        .police = TCA_FLOW_POLICE,
};

static inline u32 addr_fold(void *addr)
{
        unsigned long a = (unsigned long)addr;

        return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
}

static u32 flow_get_src(const struct sk_buff *skb)
{
        switch (skb->protocol) {
        case htons(ETH_P_IP):
                return ntohl(ip_hdr(skb)->saddr);
        case htons(ETH_P_IPV6):
                return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
        default:
                return addr_fold(skb->sk);
        }
}

static u32 flow_get_dst(const struct sk_buff *skb)
{
        switch (skb->protocol) {
        case htons(ETH_P_IP):
                return ntohl(ip_hdr(skb)->daddr);
        case htons(ETH_P_IPV6):
                return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
        default:
                return addr_fold(skb->dst) ^ (__force u16)skb->protocol;
        }
}

static u32 flow_get_proto(const struct sk_buff *skb)
{
        switch (skb->protocol) {
        case htons(ETH_P_IP):
                return ip_hdr(skb)->protocol;
        case htons(ETH_P_IPV6):
                return ipv6_hdr(skb)->nexthdr;
        default:
                return 0;
        }
}

static int has_ports(u8 protocol)
{
        switch (protocol) {
        case IPPROTO_TCP:
        case IPPROTO_UDP:
        case IPPROTO_UDPLITE:
        case IPPROTO_SCTP:
        case IPPROTO_DCCP:
        case IPPROTO_ESP:
                return 1;
        default:
                return 0;
        }
}

static u32 flow_get_proto_src(const struct sk_buff *skb)
{
        u32 res = 0;

        switch (skb->protocol) {
        case htons(ETH_P_IP): {
                struct iphdr *iph = ip_hdr(skb);

                if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
                    has_ports(iph->protocol))
                        res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4));
                break;
        }
        case htons(ETH_P_IPV6): {
                struct ipv6hdr *iph = ipv6_hdr(skb);

                if (has_ports(iph->nexthdr))
                        res = ntohs(*(__be16 *)&iph[1]);
                break;
        }
        default:
                res = addr_fold(skb->sk);
        }

        return res;
}

static u32 flow_get_proto_dst(const struct sk_buff *skb)
{
        u32 res = 0;

        switch (skb->protocol) {
        case htons(ETH_P_IP): {
                struct iphdr *iph = ip_hdr(skb);

                if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
                    has_ports(iph->protocol))
                        res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 + 2));
                break;
        }
        case htons(ETH_P_IPV6): {
                struct ipv6hdr *iph = ipv6_hdr(skb);

                if (has_ports(iph->nexthdr))
                        res = ntohs(*(__be16 *)((void *)&iph[1] + 2));
                break;
        }
        default:
                res = addr_fold(skb->dst) ^ (__force u16)skb->protocol;
        }

        return res;
}

static u32 flow_get_iif(const struct sk_buff *skb)
{
        return skb->iif;
}

static u32 flow_get_priority(const struct sk_buff *skb)
{
        return skb->priority;
}

static u32 flow_get_mark(const struct sk_buff *skb)
{
        return skb->mark;
}

static u32 flow_get_nfct(const struct sk_buff *skb)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
        return addr_fold(skb->nfct);
#else
        return 0;
#endif
}

#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
#define CTTUPLE(skb, member)                                            \
({                                                                      \
        enum ip_conntrack_info ctinfo;                                  \
        struct nf_conn *ct = nf_ct_get(skb, &ctinfo);                   \
        if (ct == NULL)                                                 \
                goto fallback;                                          \
        ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;                 \
})
#else
#define CTTUPLE(skb, member)                                            \
({                                                                      \
        goto fallback;                                                  \
        0;                                                              \
})
#endif

static u32 flow_get_nfct_src(const struct sk_buff *skb)
{
        switch (skb->protocol) {
        case htons(ETH_P_IP):
                return ntohl(CTTUPLE(skb, src.u3.ip));
        case htons(ETH_P_IPV6):
                return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
        }
fallback:
        return flow_get_src(skb);
}

static u32 flow_get_nfct_dst(const struct sk_buff *skb)
{
        switch (skb->protocol) {
        case htons(ETH_P_IP):
                return ntohl(CTTUPLE(skb, dst.u3.ip));
        case htons(ETH_P_IPV6):
                return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
        }
fallback:
        return flow_get_dst(skb);
}

static u32 flow_get_nfct_proto_src(const struct sk_buff *skb)
{
        return ntohs(CTTUPLE(skb, src.u.all));
fallback:
        return flow_get_proto_src(skb);
}

static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb)
{
        return ntohs(CTTUPLE(skb, dst.u.all));
fallback:
        return flow_get_proto_dst(skb);
}

static u32 flow_get_rtclassid(const struct sk_buff *skb)
{
#ifdef CONFIG_NET_CLS_ROUTE
        if (skb->dst)
                return skb->dst->tclassid;
#endif
        return 0;
}

static u32 flow_get_skuid(const struct sk_buff *skb)
{
        if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
                return skb->sk->sk_socket->file->f_uid;
        return 0;
}

static u32 flow_get_skgid(const struct sk_buff *skb)
{
        if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
                return skb->sk->sk_socket->file->f_gid;
        return 0;
}

static u32 flow_get_vlan_tag(const struct sk_buff *skb)
{
        u16 uninitialized_var(tag);

        if (vlan_get_tag(skb, &tag) < 0)
                return 0;
        return tag & VLAN_VID_MASK;
}

static u32 flow_key_get(const struct sk_buff *skb, int key)
{
        switch (key) {
        case FLOW_KEY_SRC:
                return flow_get_src(skb);
        case FLOW_KEY_DST:
                return flow_get_dst(skb);
        case FLOW_KEY_PROTO:
                return flow_get_proto(skb);
        case FLOW_KEY_PROTO_SRC:
                return flow_get_proto_src(skb);
        case FLOW_KEY_PROTO_DST:
                return flow_get_proto_dst(skb);
        case FLOW_KEY_IIF:
                return flow_get_iif(skb);
        case FLOW_KEY_PRIORITY:
                return flow_get_priority(skb);
        case FLOW_KEY_MARK:
                return flow_get_mark(skb);
        case FLOW_KEY_NFCT:
                return flow_get_nfct(skb);
        case FLOW_KEY_NFCT_SRC:
                return flow_get_nfct_src(skb);
        case FLOW_KEY_NFCT_DST:
                return flow_get_nfct_dst(skb);
        case FLOW_KEY_NFCT_PROTO_SRC:
                return flow_get_nfct_proto_src(skb);
        case FLOW_KEY_NFCT_PROTO_DST:
                return flow_get_nfct_proto_dst(skb);
        case FLOW_KEY_RTCLASSID:
                return flow_get_rtclassid(skb);
        case FLOW_KEY_SKUID:
                return flow_get_skuid(skb);
        case FLOW_KEY_SKGID:
                return flow_get_skgid(skb);
        case FLOW_KEY_VLAN_TAG:
                return flow_get_vlan_tag(skb);
        default:
                WARN_ON(1);
                return 0;
        }
}

static int flow_classify(struct sk_buff *skb, struct tcf_proto *tp,
                         struct tcf_result *res)
{
        struct flow_head *head = tp->root;
        struct flow_filter *f;
        u32 keymask;
        u32 classid;
        unsigned int n, key;
        int r;

        list_for_each_entry(f, &head->filters, list) {
                u32 keys[f->nkeys];

                if (!tcf_em_tree_match(skb, &f->ematches, NULL))
                        continue;

                keymask = f->keymask;

                for (n = 0; n < f->nkeys; n++) {
                        key = ffs(keymask) - 1;
                        keymask &= ~(1 << key);
                        keys[n] = flow_key_get(skb, key);
                }

                if (f->mode == FLOW_MODE_HASH)
                        classid = jhash2(keys, f->nkeys, f->hashrnd);
                else {
                        classid = keys[0];
                        classid = (classid & f->mask) ^ f->xor;
                        classid = (classid >> f->rshift) + f->addend;
                }

                if (f->divisor)
                        classid %= f->divisor;

                res->class   = 0;
                res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);

                r = tcf_exts_exec(skb, &f->exts, res);
                if (r < 0)
                        continue;
                return r;
        }
        return -1;
}

static void flow_perturbation(unsigned long arg)
{
        struct flow_filter *f = (struct flow_filter *)arg;

        get_random_bytes(&f->hashrnd, 4);
        if (f->perturb_period)
                mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
}

static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
        [TCA_FLOW_KEYS]         = { .type = NLA_U32 },
        [TCA_FLOW_MODE]         = { .type = NLA_U32 },
        [TCA_FLOW_BASECLASS]    = { .type = NLA_U32 },
        [TCA_FLOW_RSHIFT]       = { .type = NLA_U32 },
        [TCA_FLOW_ADDEND]       = { .type = NLA_U32 },
        [TCA_FLOW_MASK]         = { .type = NLA_U32 },
        [TCA_FLOW_XOR]          = { .type = NLA_U32 },
        [TCA_FLOW_DIVISOR]      = { .type = NLA_U32 },
        [TCA_FLOW_ACT]          = { .type = NLA_NESTED },
        [TCA_FLOW_POLICE]       = { .type = NLA_NESTED },
        [TCA_FLOW_EMATCHES]     = { .type = NLA_NESTED },
        [TCA_FLOW_PERTURB]      = { .type = NLA_U32 },
};

static int flow_change(struct tcf_proto *tp, unsigned long base,
                       u32 handle, struct nlattr **tca,
                       unsigned long *arg)
{
        struct flow_head *head = tp->root;
        struct flow_filter *f;
        struct nlattr *opt = tca[TCA_OPTIONS];
        struct nlattr *tb[TCA_FLOW_MAX + 1];
        struct tcf_exts e;
        struct tcf_ematch_tree t;
        unsigned int nkeys = 0;
        unsigned int perturb_period = 0;
        u32 baseclass = 0;
        u32 keymask = 0;
        u32 mode;
        int err;

        if (opt == NULL)
                return -EINVAL;

        err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
        if (err < 0)
                return err;

        if (tb[TCA_FLOW_BASECLASS]) {
                baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
                if (TC_H_MIN(baseclass) == 0)
                        return -EINVAL;
        }

        if (tb[TCA_FLOW_KEYS]) {
                keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);

                nkeys = hweight32(keymask);
                if (nkeys == 0)
                        return -EINVAL;

                if (fls(keymask) - 1 > FLOW_KEY_MAX)
                        return -EOPNOTSUPP;
        }

        err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
        if (err < 0)
                return err;

        err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
        if (err < 0)
                goto err1;

        f = (struct flow_filter *)*arg;
        if (f != NULL) {
                err = -EINVAL;
                if (f->handle != handle && handle)
                        goto err2;

                mode = f->mode;
                if (tb[TCA_FLOW_MODE])
                        mode = nla_get_u32(tb[TCA_FLOW_MODE]);
                if (mode != FLOW_MODE_HASH && nkeys > 1)
                        goto err2;

                if (mode == FLOW_MODE_HASH)
                        perturb_period = f->perturb_period;
                if (tb[TCA_FLOW_PERTURB]) {
                        if (mode != FLOW_MODE_HASH)
                                goto err2;
                        perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
                }
        } else {
                err = -EINVAL;
                if (!handle)
                        goto err2;
                if (!tb[TCA_FLOW_KEYS])
                        goto err2;

                mode = FLOW_MODE_MAP;
                if (tb[TCA_FLOW_MODE])
                        mode = nla_get_u32(tb[TCA_FLOW_MODE]);
                if (mode != FLOW_MODE_HASH && nkeys > 1)
                        goto err2;

                if (tb[TCA_FLOW_PERTURB]) {
                        if (mode != FLOW_MODE_HASH)
                                goto err2;
                        perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
                }

                if (TC_H_MAJ(baseclass) == 0)
                        baseclass = TC_H_MAKE(tp->q->handle, baseclass);
                if (TC_H_MIN(baseclass) == 0)
                        baseclass = TC_H_MAKE(baseclass, 1);

                err = -ENOBUFS;
                f = kzalloc(sizeof(*f), GFP_KERNEL);
                if (f == NULL)
                        goto err2;

                f->handle = handle;
                f->mask   = ~0U;

                get_random_bytes(&f->hashrnd, 4);
                f->perturb_timer.function = flow_perturbation;
                f->perturb_timer.data = (unsigned long)f;
                init_timer_deferrable(&f->perturb_timer);
        }

        tcf_exts_change(tp, &f->exts, &e);
        tcf_em_tree_change(tp, &f->ematches, &t);

        tcf_tree_lock(tp);

        if (tb[TCA_FLOW_KEYS]) {
                f->keymask = keymask;
                f->nkeys   = nkeys;
        }

        f->mode = mode;

        if (tb[TCA_FLOW_MASK])
                f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
        if (tb[TCA_FLOW_XOR])
                f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
        if (tb[TCA_FLOW_RSHIFT])
                f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
        if (tb[TCA_FLOW_ADDEND])
                f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);

        if (tb[TCA_FLOW_DIVISOR])
                f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
        if (baseclass)
                f->baseclass = baseclass;

        f->perturb_period = perturb_period;
        del_timer(&f->perturb_timer);
        if (perturb_period)
                mod_timer(&f->perturb_timer, jiffies + perturb_period);

        if (*arg == 0)
                list_add_tail(&f->list, &head->filters);

        tcf_tree_unlock(tp);

        *arg = (unsigned long)f;
        return 0;

err2:
        tcf_em_tree_destroy(tp, &t);
err1:
        tcf_exts_destroy(tp, &e);
        return err;
}

static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
{
        del_timer_sync(&f->perturb_timer);
        tcf_exts_destroy(tp, &f->exts);
        tcf_em_tree_destroy(tp, &f->ematches);
        kfree(f);
}

static int flow_delete(struct tcf_proto *tp, unsigned long arg)
{
        struct flow_filter *f = (struct flow_filter *)arg;

        tcf_tree_lock(tp);
        list_del(&f->list);
        tcf_tree_unlock(tp);
        flow_destroy_filter(tp, f);
        return 0;
}

static int flow_init(struct tcf_proto *tp)
{
        struct flow_head *head;

        head = kzalloc(sizeof(*head), GFP_KERNEL);
        if (head == NULL)
                return -ENOBUFS;
        INIT_LIST_HEAD(&head->filters);
        tp->root = head;
        return 0;
}

static void flow_destroy(struct tcf_proto *tp)
{
        struct flow_head *head = tp->root;
        struct flow_filter *f, *next;

        list_for_each_entry_safe(f, next, &head->filters, list) {
                list_del(&f->list);
                flow_destroy_filter(tp, f);
        }
        kfree(head);
}

static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
{
        struct flow_head *head = tp->root;
        struct flow_filter *f;

        list_for_each_entry(f, &head->filters, list)
                if (f->handle == handle)
                        return (unsigned long)f;
        return 0;
}

static void flow_put(struct tcf_proto *tp, unsigned long f)
{
        return;
}

static int flow_dump(struct tcf_proto *tp, unsigned long fh,
                     struct sk_buff *skb, struct tcmsg *t)
{
        struct flow_filter *f = (struct flow_filter *)fh;
        struct nlattr *nest;

        if (f == NULL)
                return skb->len;

        t->tcm_handle = f->handle;

        nest = nla_nest_start(skb, TCA_OPTIONS);
        if (nest == NULL)
                goto nla_put_failure;

        NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
        NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);

        if (f->mask != ~0 || f->xor != 0) {
                NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
                NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
        }
        if (f->rshift)
                NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
        if (f->addend)
                NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);

        if (f->divisor)
                NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
        if (f->baseclass)
                NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);

        if (f->perturb_period)
                NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);

        if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
                goto nla_put_failure;
#ifdef CONFIG_NET_EMATCH
        if (f->ematches.hdr.nmatches &&
            tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
                goto nla_put_failure;
#endif
        nla_nest_end(skb, nest);

        if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
                goto nla_put_failure;

        return skb->len;

nla_put_failure:
        nlmsg_trim(skb, nest);
        return -1;
}

static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
        struct flow_head *head = tp->root;
        struct flow_filter *f;

        list_for_each_entry(f, &head->filters, list) {
                if (arg->count < arg->skip)
                        goto skip;
                if (arg->fn(tp, (unsigned long)f, arg) < 0) {
                        arg->stop = 1;
                        break;
                }
skip:
                arg->count++;
        }
}

static struct tcf_proto_ops cls_flow_ops __read_mostly = {
        .kind           = "flow",
        .classify       = flow_classify,
        .init           = flow_init,
        .destroy        = flow_destroy,
        .change         = flow_change,
        .delete         = flow_delete,
        .get            = flow_get,
        .put            = flow_put,
        .dump           = flow_dump,
        .walk           = flow_walk,
        .owner          = THIS_MODULE,
};

static int __init cls_flow_init(void)
{
        return register_tcf_proto_ops(&cls_flow_ops);
}

static void __exit cls_flow_exit(void)
{
        unregister_tcf_proto_ops(&cls_flow_ops);
}

module_init(cls_flow_init);
module_exit(cls_flow_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
MODULE_DESCRIPTION("TC flow classifier");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading