[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/soc/fsl/fsl_dma.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fsl_dma_abort_stream
  2. fsl_dma_update_pointers
  3. fsl_dma_isr
  4. fsl_dma_new
  5. fsl_dma_open
  6. fsl_dma_hw_params
  7. fsl_dma_prepare
  8. fsl_dma_pointer
  9. fsl_dma_hw_free
  10. fsl_dma_close
  11. fsl_dma_free_dma_buffers
  12. fsl_dma_configure

/*
 * Freescale DMA ALSA SoC PCM driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
 * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
 * under the terms of the GNU General Public License version 2.  This
 * program is licensed "as is" without any warranty of any kind, whether
 * express or implied.
 *
 * This driver implements ASoC support for the Elo DMA controller, which is
 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
 * the PCM driver is what handles the DMA buffer.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/delay.h>

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>

#include <asm/io.h>

#include "fsl_dma.h"

/*
 * The formats that the DMA controller supports, which is anything
 * that is 8, 16, or 32 bits.
 */
#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8         | \
                            SNDRV_PCM_FMTBIT_U8         | \
                            SNDRV_PCM_FMTBIT_S16_LE     | \
                            SNDRV_PCM_FMTBIT_S16_BE     | \
                            SNDRV_PCM_FMTBIT_U16_LE     | \
                            SNDRV_PCM_FMTBIT_U16_BE     | \
                            SNDRV_PCM_FMTBIT_S24_LE     | \
                            SNDRV_PCM_FMTBIT_S24_BE     | \
                            SNDRV_PCM_FMTBIT_U24_LE     | \
                            SNDRV_PCM_FMTBIT_U24_BE     | \
                            SNDRV_PCM_FMTBIT_S32_LE     | \
                            SNDRV_PCM_FMTBIT_S32_BE     | \
                            SNDRV_PCM_FMTBIT_U32_LE     | \
                            SNDRV_PCM_FMTBIT_U32_BE)

#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
                          SNDRV_PCM_RATE_CONTINUOUS)

/* DMA global data.  This structure is used by fsl_dma_open() to determine
 * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
 * not allow the machine driver to provide this information to the PCM
 * driver in advance, and there's no way to differentiate between the two
 * DMA controllers.  So for now, this driver only supports one SSI device
 * using two DMA channels.  We cannot support multiple DMA devices.
 *
 * ssi_stx_phys: bus address of SSI STX register
 * ssi_srx_phys: bus address of SSI SRX register
 * dma_channel: pointer to the DMA channel's registers
 * irq: IRQ for this DMA channel
 * assigned: set to 1 if that DMA channel is assigned to a substream
 */
static struct {
        dma_addr_t ssi_stx_phys;
        dma_addr_t ssi_srx_phys;
        struct ccsr_dma_channel __iomem *dma_channel[2];
        unsigned int irq[2];
        unsigned int assigned[2];
} dma_global_data;

/*
 * The number of DMA links to use.  Two is the bare minimum, but if you
 * have really small links you might need more.
 */
#define NUM_DMA_LINKS   2

/** fsl_dma_private: p-substream DMA data
 *
 * Each substream has a 1-to-1 association with a DMA channel.
 *
 * The link[] array is first because it needs to be aligned on a 32-byte
 * boundary, so putting it first will ensure alignment without padding the
 * structure.
 *
 * @link[]: array of link descriptors
 * @controller_id: which DMA controller (0, 1, ...)
 * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
 * @dma_channel: pointer to the DMA channel's registers
 * @irq: IRQ for this DMA channel
 * @substream: pointer to the substream object, needed by the ISR
 * @ssi_sxx_phys: bus address of the STX or SRX register to use
 * @ld_buf_phys: physical address of the LD buffer
 * @current_link: index into link[] of the link currently being processed
 * @dma_buf_phys: physical address of the DMA buffer
 * @dma_buf_next: physical address of the next period to process
 * @dma_buf_end: physical address of the byte after the end of the DMA
 * @buffer period_size: the size of a single period
 * @num_periods: the number of periods in the DMA buffer
 */
struct fsl_dma_private {
        struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
        unsigned int controller_id;
        unsigned int channel_id;
        struct ccsr_dma_channel __iomem *dma_channel;
        unsigned int irq;
        struct snd_pcm_substream *substream;
        dma_addr_t ssi_sxx_phys;
        dma_addr_t ld_buf_phys;
        unsigned int current_link;
        dma_addr_t dma_buf_phys;
        dma_addr_t dma_buf_next;
        dma_addr_t dma_buf_end;
        size_t period_size;
        unsigned int num_periods;
};

/**
 * fsl_dma_hardare: define characteristics of the PCM hardware.
 *
 * The PCM hardware is the Freescale DMA controller.  This structure defines
 * the capabilities of that hardware.
 *
 * Since the sampling rate and data format are not controlled by the DMA
 * controller, we specify no limits for those values.  The only exception is
 * period_bytes_min, which is set to a reasonably low value to prevent the
 * DMA controller from generating too many interrupts per second.
 *
 * Since each link descriptor has a 32-bit byte count field, we set
 * period_bytes_max to the largest 32-bit number.  We also have no maximum
 * number of periods.
 *
 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
 * limitation in the SSI driver requires the sample rates for playback and
 * capture to be the same.
 */
static const struct snd_pcm_hardware fsl_dma_hardware = {

        .info                   = SNDRV_PCM_INFO_INTERLEAVED |
                                  SNDRV_PCM_INFO_MMAP |
                                  SNDRV_PCM_INFO_MMAP_VALID |
                                  SNDRV_PCM_INFO_JOINT_DUPLEX,
        .formats                = FSLDMA_PCM_FORMATS,
        .rates                  = FSLDMA_PCM_RATES,
        .rate_min               = 5512,
        .rate_max               = 192000,
        .period_bytes_min       = 512,          /* A reasonable limit */
        .period_bytes_max       = (u32) -1,
        .periods_min            = NUM_DMA_LINKS,
        .periods_max            = (unsigned int) -1,
        .buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
};

/**
 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
 *
 * This function should be called by the ISR whenever the DMA controller
 * halts data transfer.
 */
static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
{
        unsigned long flags;

        snd_pcm_stream_lock_irqsave(substream, flags);

        if (snd_pcm_running(substream))
                snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);

        snd_pcm_stream_unlock_irqrestore(substream, flags);
}

/**
 * fsl_dma_update_pointers - update LD pointers to point to the next period
 *
 * As each period is completed, this function changes the the link
 * descriptor pointers for that period to point to the next period.
 */
static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
{
        struct fsl_dma_link_descriptor *link =
                &dma_private->link[dma_private->current_link];

        /* Update our link descriptors to point to the next period */
        if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                link->source_addr =
                        cpu_to_be32(dma_private->dma_buf_next);
        else
                link->dest_addr =
                        cpu_to_be32(dma_private->dma_buf_next);

        /* Update our variables for next time */
        dma_private->dma_buf_next += dma_private->period_size;

        if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
                dma_private->dma_buf_next = dma_private->dma_buf_phys;

        if (++dma_private->current_link >= NUM_DMA_LINKS)
                dma_private->current_link = 0;
}

/**
 * fsl_dma_isr: interrupt handler for the DMA controller
 *
 * @irq: IRQ of the DMA channel
 * @dev_id: pointer to the dma_private structure for this DMA channel
 */
static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
{
        struct fsl_dma_private *dma_private = dev_id;
        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
        irqreturn_t ret = IRQ_NONE;
        u32 sr, sr2 = 0;

        /* We got an interrupt, so read the status register to see what we
           were interrupted for.
         */
        sr = in_be32(&dma_channel->sr);

        if (sr & CCSR_DMA_SR_TE) {
                dev_err(dma_private->substream->pcm->card->dev,
                        "DMA transmit error (controller=%u channel=%u irq=%u\n",
                        dma_private->controller_id,
                        dma_private->channel_id, irq);
                fsl_dma_abort_stream(dma_private->substream);
                sr2 |= CCSR_DMA_SR_TE;
                ret = IRQ_HANDLED;
        }

        if (sr & CCSR_DMA_SR_CH)
                ret = IRQ_HANDLED;

        if (sr & CCSR_DMA_SR_PE) {
                dev_err(dma_private->substream->pcm->card->dev,
                        "DMA%u programming error (channel=%u irq=%u)\n",
                        dma_private->controller_id,
                        dma_private->channel_id, irq);
                fsl_dma_abort_stream(dma_private->substream);
                sr2 |= CCSR_DMA_SR_PE;
                ret = IRQ_HANDLED;
        }

        if (sr & CCSR_DMA_SR_EOLNI) {
                sr2 |= CCSR_DMA_SR_EOLNI;
                ret = IRQ_HANDLED;
        }

        if (sr & CCSR_DMA_SR_CB)
                ret = IRQ_HANDLED;

        if (sr & CCSR_DMA_SR_EOSI) {
                struct snd_pcm_substream *substream = dma_private->substream;

                /* Tell ALSA we completed a period. */
                snd_pcm_period_elapsed(substream);

                /*
                 * Update our link descriptors to point to the next period. We
                 * only need to do this if the number of periods is not equal to
                 * the number of links.
                 */
                if (dma_private->num_periods != NUM_DMA_LINKS)
                        fsl_dma_update_pointers(dma_private);

                sr2 |= CCSR_DMA_SR_EOSI;
                ret = IRQ_HANDLED;
        }

        if (sr & CCSR_DMA_SR_EOLSI) {
                sr2 |= CCSR_DMA_SR_EOLSI;
                ret = IRQ_HANDLED;
        }

        /* Clear the bits that we set */
        if (sr2)
                out_be32(&dma_channel->sr, sr2);

        return ret;
}

/**
 * fsl_dma_new: initialize this PCM driver.
 *
 * This function is called when the codec driver calls snd_soc_new_pcms(),
 * once for each .dai_link in the machine driver's snd_soc_machine
 * structure.
 */
static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
        struct snd_pcm *pcm)
{
        static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
        int ret;

        if (!card->dev->dma_mask)
                card->dev->dma_mask = &fsl_dma_dmamask;

        if (!card->dev->coherent_dma_mask)
                card->dev->coherent_dma_mask = fsl_dma_dmamask;

        ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
                fsl_dma_hardware.buffer_bytes_max,
                &pcm->streams[0].substream->dma_buffer);
        if (ret) {
                dev_err(card->dev,
                        "Can't allocate playback DMA buffer (size=%u)\n",
                        fsl_dma_hardware.buffer_bytes_max);
                return -ENOMEM;
        }

        ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
                fsl_dma_hardware.buffer_bytes_max,
                &pcm->streams[1].substream->dma_buffer);
        if (ret) {
                snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
                dev_err(card->dev,
                        "Can't allocate capture DMA buffer (size=%u)\n",
                        fsl_dma_hardware.buffer_bytes_max);
                return -ENOMEM;
        }

        return 0;
}

/**
 * fsl_dma_open: open a new substream.
 *
 * Each substream has its own DMA buffer.
 *
 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
 * descriptors that ping-pong from one period to the next.  For example, if
 * there are six periods and two link descriptors, this is how they look
 * before playback starts:
 *
 *                 The last link descriptor
 *   ____________  points back to the first
 *  |            |
 *  V            |
 *  ___    ___   |
 * |   |->|   |->|
 * |___|  |___|
 *   |      |
 *   |      |
 *   V      V
 *  _________________________________________
 * |      |      |      |      |      |      |  The DMA buffer is
 * |      |      |      |      |      |      |    divided into 6 parts
 * |______|______|______|______|______|______|
 *
 * and here's how they look after the first period is finished playing:
 *
 *   ____________
 *  |            |
 *  V            |
 *  ___    ___   |
 * |   |->|   |->|
 * |___|  |___|
 *   |      |
 *   |______________
 *          |       |
 *          V       V
 *  _________________________________________
 * |      |      |      |      |      |      |
 * |      |      |      |      |      |      |
 * |______|______|______|______|______|______|
 *
 * The first link descriptor now points to the third period.  The DMA
 * controller is currently playing the second period.  When it finishes, it
 * will jump back to the first descriptor and play the third period.
 *
 * There are four reasons we do this:
 *
 * 1. The only way to get the DMA controller to automatically restart the
 *    transfer when it gets to the end of the buffer is to use chaining
 *    mode.  Basic direct mode doesn't offer that feature.
 * 2. We need to receive an interrupt at the end of every period.  The DMA
 *    controller can generate an interrupt at the end of every link transfer
 *    (aka segment).  Making each period into a DMA segment will give us the
 *    interrupts we need.
 * 3. By creating only two link descriptors, regardless of the number of
 *    periods, we do not need to reallocate the link descriptors if the
 *    number of periods changes.
 * 4. All of the audio data is still stored in a single, contiguous DMA
 *    buffer, which is what ALSA expects.  We're just dividing it into
 *    contiguous parts, and creating a link descriptor for each one.
 */
static int fsl_dma_open(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct fsl_dma_private *dma_private;
        struct ccsr_dma_channel __iomem *dma_channel;
        dma_addr_t ld_buf_phys;
        u64 temp_link;          /* Pointer to next link descriptor */
        u32 mr;
        unsigned int channel;
        int ret = 0;
        unsigned int i;

        /*
         * Reject any DMA buffer whose size is not a multiple of the period
         * size.  We need to make sure that the DMA buffer can be evenly divided
         * into periods.
         */
        ret = snd_pcm_hw_constraint_integer(runtime,
                SNDRV_PCM_HW_PARAM_PERIODS);
        if (ret < 0) {
                dev_err(substream->pcm->card->dev, "invalid buffer size\n");
                return ret;
        }

        channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;

        if (dma_global_data.assigned[channel]) {
                dev_err(substream->pcm->card->dev,
                        "DMA channel already assigned\n");
                return -EBUSY;
        }

        dma_private = dma_alloc_coherent(substream->pcm->dev,
                sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
        if (!dma_private) {
                dev_err(substream->pcm->card->dev,
                        "can't allocate DMA private data\n");
                return -ENOMEM;
        }
        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
        else
                dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;

        dma_private->dma_channel = dma_global_data.dma_channel[channel];
        dma_private->irq = dma_global_data.irq[channel];
        dma_private->substream = substream;
        dma_private->ld_buf_phys = ld_buf_phys;
        dma_private->dma_buf_phys = substream->dma_buffer.addr;

        /* We only support one DMA controller for now */
        dma_private->controller_id = 0;
        dma_private->channel_id = channel;

        ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
        if (ret) {
                dev_err(substream->pcm->card->dev,
                        "can't register ISR for IRQ %u (ret=%i)\n",
                        dma_private->irq, ret);
                dma_free_coherent(substream->pcm->dev,
                        sizeof(struct fsl_dma_private),
                        dma_private, dma_private->ld_buf_phys);
                return ret;
        }

        dma_global_data.assigned[channel] = 1;

        snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
        snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
        runtime->private_data = dma_private;

        /* Program the fixed DMA controller parameters */

        dma_channel = dma_private->dma_channel;

        temp_link = dma_private->ld_buf_phys +
                sizeof(struct fsl_dma_link_descriptor);

        for (i = 0; i < NUM_DMA_LINKS; i++) {
                struct fsl_dma_link_descriptor *link = &dma_private->link[i];

                link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
                link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
                link->next = cpu_to_be64(temp_link);

                temp_link += sizeof(struct fsl_dma_link_descriptor);
        }
        /* The last link descriptor points to the first */
        dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);

        /* Tell the DMA controller where the first link descriptor is */
        out_be32(&dma_channel->clndar,
                CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
        out_be32(&dma_channel->eclndar,
                CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));

        /* The manual says the BCR must be clear before enabling EMP */
        out_be32(&dma_channel->bcr, 0);

        /*
         * Program the mode register for interrupts, external master control,
         * and source/destination hold.  Also clear the Channel Abort bit.
         */
        mr = in_be32(&dma_channel->mr) &
                ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);

        /*
         * We want External Master Start and External Master Pause enabled,
         * because the SSI is controlling the DMA controller.  We want the DMA
         * controller to be set up in advance, and then we signal only the SSI
         * to start transferring.
         *
         * We want End-Of-Segment Interrupts enabled, because this will generate
         * an interrupt at the end of each segment (each link descriptor
         * represents one segment).  Each DMA segment is the same thing as an
         * ALSA period, so this is how we get an interrupt at the end of every
         * period.
         *
         * We want Error Interrupt enabled, so that we can get an error if
         * the DMA controller is mis-programmed somehow.
         */
        mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
                CCSR_DMA_MR_EMS_EN;

        /* For playback, we want the destination address to be held.  For
           capture, set the source address to be held. */
        mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
                CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;

        out_be32(&dma_channel->mr, mr);

        return 0;
}

/**
 * fsl_dma_hw_params: continue initializing the DMA links
 *
 * This function obtains hardware parameters about the opened stream and
 * programs the DMA controller accordingly.
 *
 * Note that due to a quirk of the SSI's STX register, the target address
 * for the DMA operations depends on the sample size.  So we don't program
 * the dest_addr (for playback -- source_addr for capture) fields in the
 * link descriptors here.  We do that in fsl_dma_prepare()
 */
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
        struct snd_pcm_hw_params *hw_params)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct fsl_dma_private *dma_private = runtime->private_data;

        dma_addr_t temp_addr;   /* Pointer to next period */

        unsigned int i;

        /* Get all the parameters we need */
        size_t buffer_size = params_buffer_bytes(hw_params);
        size_t period_size = params_period_bytes(hw_params);

        /* Initialize our DMA tracking variables */
        dma_private->period_size = period_size;
        dma_private->num_periods = params_periods(hw_params);
        dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
        dma_private->dma_buf_next = dma_private->dma_buf_phys +
                (NUM_DMA_LINKS * period_size);
        if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
                dma_private->dma_buf_next = dma_private->dma_buf_phys;

        /*
         * The actual address in STX0 (destination for playback, source for
         * capture) is based on the sample size, but we don't know the sample
         * size in this function, so we'll have to adjust that later.  See
         * comments in fsl_dma_prepare().
         *
         * The DMA controller does not have a cache, so the CPU does not
         * need to tell it to flush its cache.  However, the DMA
         * controller does need to tell the CPU to flush its cache.
         * That's what the SNOOP bit does.
         *
         * Also, even though the DMA controller supports 36-bit addressing, for
         * simplicity we currently support only 32-bit addresses for the audio
         * buffer itself.
         */
        temp_addr = substream->dma_buffer.addr;

        for (i = 0; i < NUM_DMA_LINKS; i++) {
                struct fsl_dma_link_descriptor *link = &dma_private->link[i];

                link->count = cpu_to_be32(period_size);

                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                        link->source_addr = cpu_to_be32(temp_addr);
                else
                        link->dest_addr = cpu_to_be32(temp_addr);

                temp_addr += period_size;
        }

        return 0;
}

/**
 * fsl_dma_prepare - prepare the DMA registers for playback.
 *
 * This function is called after the specifics of the audio data are known,
 * i.e. snd_pcm_runtime is initialized.
 *
 * In this function, we finish programming the registers of the DMA
 * controller that are dependent on the sample size.
 *
 * One of the drawbacks with big-endian is that when copying integers of
 * different sizes to a fixed-sized register, the address to which the
 * integer must be copied is dependent on the size of the integer.
 *
 * For example, if P is the address of a 32-bit register, and X is a 32-bit
 * integer, then X should be copied to address P.  However, if X is a 16-bit
 * integer, then it should be copied to P+2.  If X is an 8-bit register,
 * then it should be copied to P+3.
 *
 * So for playback of 8-bit samples, the DMA controller must transfer single
 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
 *
 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
 * 24-bit data must be padded to 32 bits.
 */
static int fsl_dma_prepare(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct fsl_dma_private *dma_private = runtime->private_data;
        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
        u32 mr;
        unsigned int i;
        dma_addr_t ssi_sxx_phys;        /* Bus address of SSI STX register */
        unsigned int frame_size;        /* Number of bytes per frame */

        ssi_sxx_phys = dma_private->ssi_sxx_phys;

        mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
                  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);

        switch (runtime->sample_bits) {
        case 8:
                mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
                ssi_sxx_phys += 3;
                break;
        case 16:
                mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
                ssi_sxx_phys += 2;
                break;
        case 32:
                mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
                break;
        default:
                dev_err(substream->pcm->card->dev,
                        "unsupported sample size %u\n", runtime->sample_bits);
                return -EINVAL;
        }

        frame_size = runtime->frame_bits / 8;
        /*
         * BWC should always be a multiple of the frame size.  BWC determines
         * how many bytes are sent/received before the DMA controller checks the
         * SSI to see if it needs to stop.  For playback, the transmit FIFO can
         * hold three frames, so we want to send two frames at a time. For
         * capture, the receive FIFO is triggered when it contains one frame, so
         * we want to receive one frame at a time.
         */

        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                mr |= CCSR_DMA_MR_BWC(2 * frame_size);
        else
                mr |= CCSR_DMA_MR_BWC(frame_size);

        out_be32(&dma_channel->mr, mr);

        /*
         * Program the address of the DMA transfer to/from the SSI.
         */
        for (i = 0; i < NUM_DMA_LINKS; i++) {
                struct fsl_dma_link_descriptor *link = &dma_private->link[i];

                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                        link->dest_addr = cpu_to_be32(ssi_sxx_phys);
                else
                        link->source_addr = cpu_to_be32(ssi_sxx_phys);
        }

        return 0;
}

/**
 * fsl_dma_pointer: determine the current position of the DMA transfer
 *
 * This function is called by ALSA when ALSA wants to know where in the
 * stream buffer the hardware currently is.
 *
 * For playback, the SAR register contains the physical address of the most
 * recent DMA transfer.  For capture, the value is in the DAR register.
 *
 * The base address of the buffer is stored in the source_addr field of the
 * first link descriptor.
 */
static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct fsl_dma_private *dma_private = runtime->private_data;
        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
        dma_addr_t position;
        snd_pcm_uframes_t frames;

        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                position = in_be32(&dma_channel->sar);
        else
                position = in_be32(&dma_channel->dar);

        frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);

        /*
         * If the current address is just past the end of the buffer, wrap it
         * around.
         */
        if (frames == runtime->buffer_size)
                frames = 0;

        return frames;
}

/**
 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
 *
 * Release the resources allocated in fsl_dma_hw_params() and de-program the
 * registers.
 *
 * This function can be called multiple times.
 */
static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct fsl_dma_private *dma_private = runtime->private_data;

        if (dma_private) {
                struct ccsr_dma_channel __iomem *dma_channel;

                dma_channel = dma_private->dma_channel;

                /* Stop the DMA */
                out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
                out_be32(&dma_channel->mr, 0);

                /* Reset all the other registers */
                out_be32(&dma_channel->sr, -1);
                out_be32(&dma_channel->clndar, 0);
                out_be32(&dma_channel->eclndar, 0);
                out_be32(&dma_channel->satr, 0);
                out_be32(&dma_channel->sar, 0);
                out_be32(&dma_channel->datr, 0);
                out_be32(&dma_channel->dar, 0);
                out_be32(&dma_channel->bcr, 0);
                out_be32(&dma_channel->nlndar, 0);
                out_be32(&dma_channel->enlndar, 0);
        }

        return 0;
}

/**
 * fsl_dma_close: close the stream.
 */
static int fsl_dma_close(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct fsl_dma_private *dma_private = runtime->private_data;
        int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;

        if (dma_private) {
                if (dma_private->irq)
                        free_irq(dma_private->irq, dma_private);

                if (dma_private->ld_buf_phys) {
                        dma_unmap_single(substream->pcm->dev,
                                dma_private->ld_buf_phys,
                                sizeof(dma_private->link), DMA_TO_DEVICE);
                }

                /* Deallocate the fsl_dma_private structure */
                dma_free_coherent(substream->pcm->dev,
                        sizeof(struct fsl_dma_private),
                        dma_private, dma_private->ld_buf_phys);
                substream->runtime->private_data = NULL;
        }

        dma_global_data.assigned[dir] = 0;

        return 0;
}

/*
 * Remove this PCM driver.
 */
static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
{
        struct snd_pcm_substream *substream;
        unsigned int i;

        for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
                substream = pcm->streams[i].substream;
                if (substream) {
                        snd_dma_free_pages(&substream->dma_buffer);
                        substream->dma_buffer.area = NULL;
                        substream->dma_buffer.addr = 0;
                }
        }
}

static struct snd_pcm_ops fsl_dma_ops = {
        .open           = fsl_dma_open,
        .close          = fsl_dma_close,
        .ioctl          = snd_pcm_lib_ioctl,
        .hw_params      = fsl_dma_hw_params,
        .hw_free        = fsl_dma_hw_free,
        .prepare        = fsl_dma_prepare,
        .pointer        = fsl_dma_pointer,
};

struct snd_soc_platform fsl_soc_platform = {
        .name           = "fsl-dma",
        .pcm_ops        = &fsl_dma_ops,
        .pcm_new        = fsl_dma_new,
        .pcm_free       = fsl_dma_free_dma_buffers,
};
EXPORT_SYMBOL_GPL(fsl_soc_platform);

/**
 * fsl_dma_configure: store the DMA parameters from the fabric driver.
 *
 * This function is called by the ASoC fabric driver to give us the DMA and
 * SSI channel information.
 *
 * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
 * data when a substream is created, so for now we need to store this data
 * into a global variable.  This means that we can only support one DMA
 * controller, and hence only one SSI.
 */
int fsl_dma_configure(struct fsl_dma_info *dma_info)
{
        static int initialized;

        /* We only support one DMA controller for now */
        if (initialized)
                return 0;

        dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
        dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
        dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
        dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
        dma_global_data.irq[0] = dma_info->dma_irq[0];
        dma_global_data.irq[1] = dma_info->dma_irq[1];
        dma_global_data.assigned[0] = 0;
        dma_global_data.assigned[1] = 0;

        initialized = 1;
        return 1;
}
EXPORT_SYMBOL_GPL(fsl_dma_configure);

MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading