[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/als4000.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_als4k_iobase_writeb
  2. snd_als4k_iobase_writel
  3. snd_als4k_iobase_readb
  4. snd_als4k_iobase_readl
  5. snd_als4k_gcr_write_addr
  6. snd_als4k_gcr_write
  7. snd_als4k_gcr_read_addr
  8. snd_als4k_gcr_read
  9. snd_als4_cr_write
  10. snd_als4_cr_read
  11. snd_als4000_set_rate
  12. snd_als4000_set_capture_dma
  13. snd_als4000_set_playback_dma
  14. snd_als4000_get_format
  15. snd_als4000_hw_params
  16. snd_als4000_hw_free
  17. snd_als4000_capture_prepare
  18. snd_als4000_playback_prepare
  19. snd_als4000_capture_trigger
  20. snd_als4000_playback_trigger
  21. snd_als4000_capture_pointer
  22. snd_als4000_playback_pointer
  23. snd_als4000_interrupt
  24. snd_als4000_playback_open
  25. snd_als4000_playback_close
  26. snd_als4000_capture_open
  27. snd_als4000_capture_close
  28. snd_als4000_pcm
  29. snd_als4000_set_addr
  30. snd_als4000_configure
  31. snd_als4000_create_gameport
  32. snd_als4000_free_gameport
  33. snd_als4000_create_gameport
  34. snd_als4000_free_gameport
  35. snd_card_als4000_free
  36. snd_card_als4000_probe
  37. snd_card_als4000_remove
  38. snd_als4000_suspend
  39. snd_als4000_resume
  40. alsa_card_als4000_init
  41. alsa_card_als4000_exit

/*
 *  card-als4000.c - driver for Avance Logic ALS4000 based soundcards.
 *  Copyright (C) 2000 by Bart Hartgers <bart@etpmod.phys.tue.nl>,
 *                        Jaroslav Kysela <perex@perex.cz>
 *  Copyright (C) 2002, 2008 by Andreas Mohr <hw7oshyuv3001@sneakemail.com>
 *
 *  Framework borrowed from Massimo Piccioni's card-als100.c.
 *
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.

 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 * NOTES
 *
 *  Since Avance does not provide any meaningful documentation, and I
 *  bought an ALS4000 based soundcard, I was forced to base this driver
 *  on reverse engineering.
 *
 *  Note: this is no longer true (thank you!):
 *  pretty verbose chip docu (ALS4000a.PDF) can be found on the ALSA web site.
 *  Page numbers stated anywhere below with the "SPECS_PAGE:" tag
 *  refer to: ALS4000a.PDF specs Ver 1.0, May 28th, 1998.
 *
 *  The ALS4000 seems to be the PCI-cousin of the ALS100. It contains an
 *  ALS100-like SB DSP/mixer, an OPL3 synth, a MPU401 and a gameport 
 *  interface. These subsystems can be mapped into ISA io-port space, 
 *  using the PCI-interface. In addition, the PCI-bit provides DMA and IRQ 
 *  services to the subsystems.
 * 
 * While ALS4000 is very similar to a SoundBlaster, the differences in
 * DMA and capturing require more changes to the SoundBlaster than
 * desirable, so I made this separate driver.
 * 
 * The ALS4000 can do real full duplex playback/capture.
 *
 * FMDAC:
 * - 0x4f -> port 0x14
 * - port 0x15 |= 1
 *
 * Enable/disable 3D sound:
 * - 0x50 -> port 0x14
 * - change bit 6 (0x40) of port 0x15
 *
 * Set QSound:
 * - 0xdb -> port 0x14
 * - set port 0x15:
 *   0x3e (mode 3), 0x3c (mode 2), 0x3a (mode 1), 0x38 (mode 0)
 *
 * Set KSound:
 * - value -> some port 0x0c0d
 *
 * ToDo:
 * - by default, don't enable legacy game and use PCI game I/O
 * - power management? (card can do voice wakeup according to datasheet!!)
 */

#include <asm/io.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/moduleparam.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/sb.h>
#include <sound/initval.h>

MODULE_AUTHOR("Bart Hartgers <bart@etpmod.phys.tue.nl>, Andreas Mohr");
MODULE_DESCRIPTION("Avance Logic ALS4000");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Avance Logic,ALS4000}}");

#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
#ifdef SUPPORT_JOYSTICK
static int joystick_port[SNDRV_CARDS];
#endif

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for ALS4000 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for ALS4000 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable ALS4000 soundcard.");
#ifdef SUPPORT_JOYSTICK
module_param_array(joystick_port, int, NULL, 0444);
MODULE_PARM_DESC(joystick_port, "Joystick port address for ALS4000 soundcard. (0 = disabled)");
#endif

struct snd_card_als4000 {
        /* most frequent access first */
        unsigned long iobase;
        struct pci_dev *pci;
        struct snd_sb *chip;
#ifdef SUPPORT_JOYSTICK
        struct gameport *gameport;
#endif
};

static struct pci_device_id snd_als4000_ids[] = {
        { 0x4005, 0x4000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },   /* ALS4000 */
        { 0, }
};

MODULE_DEVICE_TABLE(pci, snd_als4000_ids);

enum als4k_iobase_t {
        /* IOx: B == Byte, W = Word, D = DWord; SPECS_PAGE: 37 */
        ALS4K_IOD_00_AC97_ACCESS = 0x00,
        ALS4K_IOW_04_AC97_READ = 0x04,
        ALS4K_IOB_06_AC97_STATUS = 0x06,
        ALS4K_IOB_07_IRQSTATUS = 0x07,
        ALS4K_IOD_08_GCR_DATA = 0x08,
        ALS4K_IOB_0C_GCR_INDEX = 0x0c,
        ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU = 0x0e,
        ALS4K_IOB_10_ADLIB_ADDR0 = 0x10,
        ALS4K_IOB_11_ADLIB_ADDR1 = 0x11,
        ALS4K_IOB_12_ADLIB_ADDR2 = 0x12,
        ALS4K_IOB_13_ADLIB_ADDR3 = 0x13,
        ALS4K_IOB_14_MIXER_INDEX = 0x14,
        ALS4K_IOB_15_MIXER_DATA = 0x15,
        ALS4K_IOB_16_ESP_RESET = 0x16,
        ALS4K_IOB_16_ACK_FOR_CR1E = 0x16, /* 2nd function */
        ALS4K_IOB_18_OPL_ADDR0 = 0x18,
        ALS4K_IOB_19_OPL_ADDR1 = 0x19,
        ALS4K_IOB_1A_ESP_RD_DATA = 0x1a,
        ALS4K_IOB_1C_ESP_CMD_DATA = 0x1c,
        ALS4K_IOB_1C_ESP_WR_STATUS = 0x1c, /* 2nd function */
        ALS4K_IOB_1E_ESP_RD_STATUS8 = 0x1e,
        ALS4K_IOB_1F_ESP_RD_STATUS16 = 0x1f,
        ALS4K_IOB_20_ESP_GAMEPORT_200 = 0x20,
        ALS4K_IOB_21_ESP_GAMEPORT_201 = 0x21,
        ALS4K_IOB_30_MIDI_DATA = 0x30,
        ALS4K_IOB_31_MIDI_STATUS = 0x31,
        ALS4K_IOB_31_MIDI_COMMAND = 0x31, /* 2nd function */
};

enum als4k_iobase_0e_t {
        ALS4K_IOB_0E_MPU_IRQ = 0x10,
        ALS4K_IOB_0E_CR1E_IRQ = 0x40,
        ALS4K_IOB_0E_SB_DMA_IRQ = 0x80,
};

enum als4k_gcr_t { /* all registers 32bit wide; SPECS_PAGE: 38 to 42 */
        ALS4K_GCR8C_MISC_CTRL = 0x8c,
        ALS4K_GCR90_TEST_MODE_REG = 0x90,
        ALS4K_GCR91_DMA0_ADDR = 0x91,
        ALS4K_GCR92_DMA0_MODE_COUNT = 0x92,
        ALS4K_GCR93_DMA1_ADDR = 0x93,
        ALS4K_GCR94_DMA1_MODE_COUNT = 0x94,
        ALS4K_GCR95_DMA3_ADDR = 0x95,
        ALS4K_GCR96_DMA3_MODE_COUNT = 0x96,
        ALS4K_GCR99_DMA_EMULATION_CTRL = 0x99,
        ALS4K_GCRA0_FIFO1_CURRENT_ADDR = 0xa0,
        ALS4K_GCRA1_FIFO1_STATUS_BYTECOUNT = 0xa1,
        ALS4K_GCRA2_FIFO2_PCIADDR = 0xa2,
        ALS4K_GCRA3_FIFO2_COUNT = 0xa3,
        ALS4K_GCRA4_FIFO2_CURRENT_ADDR = 0xa4,
        ALS4K_GCRA5_FIFO1_STATUS_BYTECOUNT = 0xa5,
        ALS4K_GCRA6_PM_CTRL = 0xa6,
        ALS4K_GCRA7_PCI_ACCESS_STORAGE = 0xa7,
        ALS4K_GCRA8_LEGACY_CFG1 = 0xa8,
        ALS4K_GCRA9_LEGACY_CFG2 = 0xa9,
        ALS4K_GCRFF_DUMMY_SCRATCH = 0xff,
};

enum als4k_gcr8c_t {
        ALS4K_GCR8C_IRQ_MASK_CTRL_ENABLE = 0x8000,
        ALS4K_GCR8C_CHIP_REV_MASK = 0xf0000
};

static inline void snd_als4k_iobase_writeb(unsigned long iobase,
                                                enum als4k_iobase_t reg,
                                                u8 val)
{
        outb(val, iobase + reg);
}

static inline void snd_als4k_iobase_writel(unsigned long iobase,
                                                enum als4k_iobase_t reg,
                                                u32 val)
{
        outl(val, iobase + reg);
}

static inline u8 snd_als4k_iobase_readb(unsigned long iobase,
                                                enum als4k_iobase_t reg)
{
        return inb(iobase + reg);
}

static inline u32 snd_als4k_iobase_readl(unsigned long iobase,
                                                enum als4k_iobase_t reg)
{
        return inl(iobase + reg);
}

static inline void snd_als4k_gcr_write_addr(unsigned long iobase,
                                                 enum als4k_gcr_t reg,
                                                 u32 val)
{
        snd_als4k_iobase_writeb(iobase, ALS4K_IOB_0C_GCR_INDEX, reg);
        snd_als4k_iobase_writel(iobase, ALS4K_IOD_08_GCR_DATA, val);
}

static inline void snd_als4k_gcr_write(struct snd_sb *sb,
                                         enum als4k_gcr_t reg,
                                         u32 val)
{
        snd_als4k_gcr_write_addr(sb->alt_port, reg, val);
}       

static inline u32 snd_als4k_gcr_read_addr(unsigned long iobase,
                                                 enum als4k_gcr_t reg)
{
        /* SPECS_PAGE: 37/38 */
        snd_als4k_iobase_writeb(iobase, ALS4K_IOB_0C_GCR_INDEX, reg);
        return snd_als4k_iobase_readl(iobase, ALS4K_IOD_08_GCR_DATA);
}

static inline u32 snd_als4k_gcr_read(struct snd_sb *sb, enum als4k_gcr_t reg)
{
        return snd_als4k_gcr_read_addr(sb->alt_port, reg);
}

enum als4k_cr_t { /* all registers 8bit wide; SPECS_PAGE: 20 to 23 */
        ALS4K_CR0_SB_CONFIG = 0x00,
        ALS4K_CR2_MISC_CONTROL = 0x02,
        ALS4K_CR3_CONFIGURATION = 0x03,
        ALS4K_CR17_FIFO_STATUS = 0x17,
        ALS4K_CR18_ESP_MAJOR_VERSION = 0x18,
        ALS4K_CR19_ESP_MINOR_VERSION = 0x19,
        ALS4K_CR1A_MPU401_UART_MODE_CONTROL = 0x1a,
        ALS4K_CR1C_FIFO2_BLOCK_LENGTH_LO = 0x1c,
        ALS4K_CR1D_FIFO2_BLOCK_LENGTH_HI = 0x1d,
        ALS4K_CR1E_FIFO2_CONTROL = 0x1e, /* secondary PCM FIFO (recording) */
        ALS4K_CR3A_MISC_CONTROL = 0x3a,
        ALS4K_CR3B_CRC32_BYTE0 = 0x3b, /* for testing, activate via CR3A */
        ALS4K_CR3C_CRC32_BYTE1 = 0x3c,
        ALS4K_CR3D_CRC32_BYTE2 = 0x3d,
        ALS4K_CR3E_CRC32_BYTE3 = 0x3e,
};

enum als4k_cr0_t {
        ALS4K_CR0_DMA_CONTIN_MODE_CTRL = 0x02, /* IRQ/FIFO controlled for 0/1 */
        ALS4K_CR0_DMA_90H_MODE_CTRL = 0x04, /* IRQ/FIFO controlled for 0/1 */
        ALS4K_CR0_MX80_81_REG_WRITE_ENABLE = 0x80,
};

static inline void snd_als4_cr_write(struct snd_sb *chip,
                                        enum als4k_cr_t reg,
                                        u8 data)
{
        /* Control Register is reg | 0xc0 (bit 7, 6 set) on sbmixer_index
         * NOTE: assumes chip->mixer_lock to be locked externally already!
         * SPECS_PAGE: 6 */
        snd_sbmixer_write(chip, reg | 0xc0, data);
}

static inline u8 snd_als4_cr_read(struct snd_sb *chip,
                                        enum als4k_cr_t reg)
{
        /* NOTE: assumes chip->mixer_lock to be locked externally already! */
        return snd_sbmixer_read(chip, reg | 0xc0);
}



static void snd_als4000_set_rate(struct snd_sb *chip, unsigned int rate)
{
        if (!(chip->mode & SB_RATE_LOCK)) {
                snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_OUT);
                snd_sbdsp_command(chip, rate>>8);
                snd_sbdsp_command(chip, rate);
        }
}

static inline void snd_als4000_set_capture_dma(struct snd_sb *chip,
                                               dma_addr_t addr, unsigned size)
{
        /* SPECS_PAGE: 40 */
        snd_als4k_gcr_write(chip, ALS4K_GCRA2_FIFO2_PCIADDR, addr);
        snd_als4k_gcr_write(chip, ALS4K_GCRA3_FIFO2_COUNT, (size-1));
}

static inline void snd_als4000_set_playback_dma(struct snd_sb *chip,
                                                dma_addr_t addr,
                                                unsigned size)
{
        /* SPECS_PAGE: 38 */
        snd_als4k_gcr_write(chip, ALS4K_GCR91_DMA0_ADDR, addr);
        snd_als4k_gcr_write(chip, ALS4K_GCR92_DMA0_MODE_COUNT,
                                                        (size-1)|0x180000);
}

#define ALS4000_FORMAT_SIGNED   (1<<0)
#define ALS4000_FORMAT_16BIT    (1<<1)
#define ALS4000_FORMAT_STEREO   (1<<2)

static int snd_als4000_get_format(struct snd_pcm_runtime *runtime)
{
        int result;

        result = 0;
        if (snd_pcm_format_signed(runtime->format))
                result |= ALS4000_FORMAT_SIGNED;
        if (snd_pcm_format_physical_width(runtime->format) == 16)
                result |= ALS4000_FORMAT_16BIT;
        if (runtime->channels > 1)
                result |= ALS4000_FORMAT_STEREO;
        return result;
}

/* structure for setting up playback */
static const struct {
        unsigned char dsp_cmd, dma_on, dma_off, format;
} playback_cmd_vals[]={
/* ALS4000_FORMAT_U8_MONO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_MONO },
/* ALS4000_FORMAT_S8_MONO */    
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_MONO },
/* ALS4000_FORMAT_U16L_MONO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_MONO },
/* ALS4000_FORMAT_S16L_MONO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_MONO },
/* ALS4000_FORMAT_U8_STEREO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_STEREO },
/* ALS4000_FORMAT_S8_STEREO */  
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_STEREO },
/* ALS4000_FORMAT_U16L_STEREO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_STEREO },
/* ALS4000_FORMAT_S16L_STEREO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_STEREO },
};
#define playback_cmd(chip) (playback_cmd_vals[(chip)->playback_format])

/* structure for setting up capture */
enum { CMD_WIDTH8=0x04, CMD_SIGNED=0x10, CMD_MONO=0x80, CMD_STEREO=0xA0 };
static const unsigned char capture_cmd_vals[]=
{
CMD_WIDTH8|CMD_MONO,                    /* ALS4000_FORMAT_U8_MONO */
CMD_WIDTH8|CMD_SIGNED|CMD_MONO,         /* ALS4000_FORMAT_S8_MONO */    
CMD_MONO,                               /* ALS4000_FORMAT_U16L_MONO */
CMD_SIGNED|CMD_MONO,                    /* ALS4000_FORMAT_S16L_MONO */
CMD_WIDTH8|CMD_STEREO,                  /* ALS4000_FORMAT_U8_STEREO */
CMD_WIDTH8|CMD_SIGNED|CMD_STEREO,       /* ALS4000_FORMAT_S8_STEREO */  
CMD_STEREO,                             /* ALS4000_FORMAT_U16L_STEREO */
CMD_SIGNED|CMD_STEREO,                  /* ALS4000_FORMAT_S16L_STEREO */
};      
#define capture_cmd(chip) (capture_cmd_vals[(chip)->capture_format])

static int snd_als4000_hw_params(struct snd_pcm_substream *substream,
                                 struct snd_pcm_hw_params *hw_params)
{
        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static int snd_als4000_hw_free(struct snd_pcm_substream *substream)
{
        snd_pcm_lib_free_pages(substream);
        return 0;
}

static int snd_als4000_capture_prepare(struct snd_pcm_substream *substream)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        unsigned long size;
        unsigned count;

        chip->capture_format = snd_als4000_get_format(runtime);
                
        size = snd_pcm_lib_buffer_bytes(substream);
        count = snd_pcm_lib_period_bytes(substream);
        
        if (chip->capture_format & ALS4000_FORMAT_16BIT)
                count >>= 1;
        count--;

        spin_lock_irq(&chip->reg_lock);
        snd_als4000_set_rate(chip, runtime->rate);
        snd_als4000_set_capture_dma(chip, runtime->dma_addr, size);
        spin_unlock_irq(&chip->reg_lock);
        spin_lock_irq(&chip->mixer_lock);
        snd_als4_cr_write(chip, ALS4K_CR1C_FIFO2_BLOCK_LENGTH_LO, count & 0xff);
        snd_als4_cr_write(chip, ALS4K_CR1D_FIFO2_BLOCK_LENGTH_HI, count >> 8);
        spin_unlock_irq(&chip->mixer_lock);
        return 0;
}

static int snd_als4000_playback_prepare(struct snd_pcm_substream *substream)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        unsigned long size;
        unsigned count;

        chip->playback_format = snd_als4000_get_format(runtime);
        
        size = snd_pcm_lib_buffer_bytes(substream);
        count = snd_pcm_lib_period_bytes(substream);
        
        if (chip->playback_format & ALS4000_FORMAT_16BIT)
                count >>= 1;
        count--;
        
        /* FIXME: from second playback on, there's a lot more clicks and pops
         * involved here than on first playback. Fiddling with
         * tons of different settings didn't help (DMA, speaker on/off,
         * reordering, ...). Something seems to get enabled on playback
         * that I haven't found out how to disable again, which then causes
         * the switching pops to reach the speakers the next time here. */
        spin_lock_irq(&chip->reg_lock);
        snd_als4000_set_rate(chip, runtime->rate);
        snd_als4000_set_playback_dma(chip, runtime->dma_addr, size);
        
        /* SPEAKER_ON not needed, since dma_on seems to also enable speaker */
        /* snd_sbdsp_command(chip, SB_DSP_SPEAKER_ON); */
        snd_sbdsp_command(chip, playback_cmd(chip).dsp_cmd);
        snd_sbdsp_command(chip, playback_cmd(chip).format);
        snd_sbdsp_command(chip, count & 0xff);
        snd_sbdsp_command(chip, count >> 8);
        snd_sbdsp_command(chip, playback_cmd(chip).dma_off);    
        spin_unlock_irq(&chip->reg_lock);
        
        return 0;
}

static int snd_als4000_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);
        int result = 0;
        
        /* FIXME race condition in here!!!
           chip->mode non-atomic update gets consistently protected
           by reg_lock always, _except_ for this place!!
           Probably need to take reg_lock as outer (or inner??) lock, too.
           (or serialize both lock operations? probably not, though... - racy?)
        */
        spin_lock(&chip->mixer_lock);
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
        case SNDRV_PCM_TRIGGER_RESUME:
                chip->mode |= SB_RATE_LOCK_CAPTURE;
                snd_als4_cr_write(chip, ALS4K_CR1E_FIFO2_CONTROL,
                                                         capture_cmd(chip));
                break;
        case SNDRV_PCM_TRIGGER_STOP:
        case SNDRV_PCM_TRIGGER_SUSPEND:
                chip->mode &= ~SB_RATE_LOCK_CAPTURE;
                snd_als4_cr_write(chip, ALS4K_CR1E_FIFO2_CONTROL,
                                                         capture_cmd(chip));
                break;
        default:
                result = -EINVAL;
                break;
        }
        spin_unlock(&chip->mixer_lock);
        return result;
}

static int snd_als4000_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);
        int result = 0;

        spin_lock(&chip->reg_lock);
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
        case SNDRV_PCM_TRIGGER_RESUME:
                chip->mode |= SB_RATE_LOCK_PLAYBACK;
                snd_sbdsp_command(chip, playback_cmd(chip).dma_on);
                break;
        case SNDRV_PCM_TRIGGER_STOP:
        case SNDRV_PCM_TRIGGER_SUSPEND:
                snd_sbdsp_command(chip, playback_cmd(chip).dma_off);
                chip->mode &= ~SB_RATE_LOCK_PLAYBACK;
                break;
        default:
                result = -EINVAL;
                break;
        }
        spin_unlock(&chip->reg_lock);
        return result;
}

static snd_pcm_uframes_t snd_als4000_capture_pointer(struct snd_pcm_substream *substream)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);
        unsigned int result;

        spin_lock(&chip->reg_lock);     
        result = snd_als4k_gcr_read(chip, ALS4K_GCRA4_FIFO2_CURRENT_ADDR);
        spin_unlock(&chip->reg_lock);
        result &= 0xffff;
        return bytes_to_frames( substream->runtime, result );
}

static snd_pcm_uframes_t snd_als4000_playback_pointer(struct snd_pcm_substream *substream)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);
        unsigned result;

        spin_lock(&chip->reg_lock);     
        result = snd_als4k_gcr_read(chip, ALS4K_GCRA0_FIFO1_CURRENT_ADDR);
        spin_unlock(&chip->reg_lock);
        result &= 0xffff;
        return bytes_to_frames( substream->runtime, result );
}

/* FIXME: this IRQ routine doesn't really support IRQ sharing (we always
 * return IRQ_HANDLED no matter whether we actually had an IRQ flag or not).
 * ALS4000a.PDF writes that while ACKing IRQ in PCI block will *not* ACK
 * the IRQ in the SB core, ACKing IRQ in SB block *will* ACK the PCI IRQ
 * register (alt_port + ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU). Probably something
 * could be optimized here to query/write one register only...
 * And even if both registers need to be queried, then there's still the
 * question of whether it's actually correct to ACK PCI IRQ before reading
 * SB IRQ like we do now, since ALS4000a.PDF mentions that PCI IRQ will *clear*
 * SB IRQ status.
 * (hmm, SPECS_PAGE: 38 mentions it the other way around!)
 * And do we *really* need the lock here for *reading* SB_DSP4_IRQSTATUS??
 * */
static irqreturn_t snd_als4000_interrupt(int irq, void *dev_id)
{
        struct snd_sb *chip = dev_id;
        unsigned pci_irqstatus;
        unsigned sb_irqstatus;

        /* find out which bit of the ALS4000 PCI block produced the interrupt,
           SPECS_PAGE: 38, 5 */
        pci_irqstatus = snd_als4k_iobase_readb(chip->alt_port,
                                 ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU);
        if ((pci_irqstatus & ALS4K_IOB_0E_SB_DMA_IRQ)
         && (chip->playback_substream)) /* playback */
                snd_pcm_period_elapsed(chip->playback_substream);
        if ((pci_irqstatus & ALS4K_IOB_0E_CR1E_IRQ)
         && (chip->capture_substream)) /* capturing */
                snd_pcm_period_elapsed(chip->capture_substream);
        if ((pci_irqstatus & ALS4K_IOB_0E_MPU_IRQ)
         && (chip->rmidi)) /* MPU401 interrupt */
                snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
        /* ACK the PCI block IRQ */
        snd_als4k_iobase_writeb(chip->alt_port,
                         ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU, pci_irqstatus);
        
        spin_lock(&chip->mixer_lock);
        /* SPECS_PAGE: 20 */
        sb_irqstatus = snd_sbmixer_read(chip, SB_DSP4_IRQSTATUS);
        spin_unlock(&chip->mixer_lock);
        
        if (sb_irqstatus & SB_IRQTYPE_8BIT)
                snd_sb_ack_8bit(chip);
        if (sb_irqstatus & SB_IRQTYPE_16BIT)
                snd_sb_ack_16bit(chip);
        if (sb_irqstatus & SB_IRQTYPE_MPUIN)
                inb(chip->mpu_port);
        if (sb_irqstatus & ALS4K_IRQTYPE_CR1E_DMA)
                snd_als4k_iobase_readb(chip->alt_port,
                                        ALS4K_IOB_16_ACK_FOR_CR1E);

        /* printk(KERN_INFO "als4000: irq 0x%04x 0x%04x\n",
                                         pci_irqstatus, sb_irqstatus); */

        /* only ack the things we actually handled above */
        return IRQ_RETVAL(
             (pci_irqstatus & (ALS4K_IOB_0E_SB_DMA_IRQ|ALS4K_IOB_0E_CR1E_IRQ|
                                ALS4K_IOB_0E_MPU_IRQ))
          || (sb_irqstatus & (SB_IRQTYPE_8BIT|SB_IRQTYPE_16BIT|
                                SB_IRQTYPE_MPUIN|ALS4K_IRQTYPE_CR1E_DMA))
        );
}

/*****************************************************************/

static struct snd_pcm_hardware snd_als4000_playback =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
                                SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE,      /* formats */
        .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             4000,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     65536,
        .period_bytes_min =     64,
        .period_bytes_max =     65536,
        .periods_min =          1,
        .periods_max =          1024,
        .fifo_size =            0
};

static struct snd_pcm_hardware snd_als4000_capture =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
                                SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE,      /* formats */
        .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             4000,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     65536,
        .period_bytes_min =     64,
        .period_bytes_max =     65536,
        .periods_min =          1,
        .periods_max =          1024,
        .fifo_size =            0
};

/*****************************************************************/

static int snd_als4000_playback_open(struct snd_pcm_substream *substream)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        chip->playback_substream = substream;
        runtime->hw = snd_als4000_playback;
        return 0;
}

static int snd_als4000_playback_close(struct snd_pcm_substream *substream)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);

        chip->playback_substream = NULL;
        snd_pcm_lib_free_pages(substream);
        return 0;
}

static int snd_als4000_capture_open(struct snd_pcm_substream *substream)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        chip->capture_substream = substream;
        runtime->hw = snd_als4000_capture;
        return 0;
}

static int snd_als4000_capture_close(struct snd_pcm_substream *substream)
{
        struct snd_sb *chip = snd_pcm_substream_chip(substream);

        chip->capture_substream = NULL;
        snd_pcm_lib_free_pages(substream);
        return 0;
}

/******************************************************************/

static struct snd_pcm_ops snd_als4000_playback_ops = {
        .open =         snd_als4000_playback_open,
        .close =        snd_als4000_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_als4000_hw_params,
        .hw_free =      snd_als4000_hw_free,
        .prepare =      snd_als4000_playback_prepare,
        .trigger =      snd_als4000_playback_trigger,
        .pointer =      snd_als4000_playback_pointer
};

static struct snd_pcm_ops snd_als4000_capture_ops = {
        .open =         snd_als4000_capture_open,
        .close =        snd_als4000_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_als4000_hw_params,
        .hw_free =      snd_als4000_hw_free,
        .prepare =      snd_als4000_capture_prepare,
        .trigger =      snd_als4000_capture_trigger,
        .pointer =      snd_als4000_capture_pointer
};

static int __devinit snd_als4000_pcm(struct snd_sb *chip, int device)
{
        struct snd_pcm *pcm;
        int err;

        err = snd_pcm_new(chip->card, "ALS4000 DSP", device, 1, 1, &pcm);
        if (err < 0)
                return err;
        pcm->private_data = chip;
        pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_als4000_playback_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_als4000_capture_ops);

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
                                              64*1024, 64*1024);

        chip->pcm = pcm;

        return 0;
}

/******************************************************************/

static void snd_als4000_set_addr(unsigned long iobase,
                                        unsigned int sb_io,
                                        unsigned int mpu_io,
                                        unsigned int opl_io,
                                        unsigned int game_io)
{
        u32 cfg1 = 0;
        u32 cfg2 = 0;

        if (mpu_io > 0)
                cfg2 |= (mpu_io | 1) << 16;
        if (sb_io > 0)
                cfg2 |= (sb_io | 1);
        if (game_io > 0)
                cfg1 |= (game_io | 1) << 16;
        if (opl_io > 0)
                cfg1 |= (opl_io | 1);
        snd_als4k_gcr_write_addr(iobase, ALS4K_GCRA8_LEGACY_CFG1, cfg1);
        snd_als4k_gcr_write_addr(iobase, ALS4K_GCRA9_LEGACY_CFG2, cfg2);
}

static void snd_als4000_configure(struct snd_sb *chip)
{
        u8 tmp;
        int i;

        /* do some more configuration */
        spin_lock_irq(&chip->mixer_lock);
        tmp = snd_als4_cr_read(chip, ALS4K_CR0_SB_CONFIG);
        snd_als4_cr_write(chip, ALS4K_CR0_SB_CONFIG,
                                tmp|ALS4K_CR0_MX80_81_REG_WRITE_ENABLE);
        /* always select DMA channel 0, since we do not actually use DMA
         * SPECS_PAGE: 19/20 */
        snd_sbmixer_write(chip, SB_DSP4_DMASETUP, SB_DMASETUP_DMA0);
        snd_als4_cr_write(chip, ALS4K_CR0_SB_CONFIG,
                                 tmp & ~ALS4K_CR0_MX80_81_REG_WRITE_ENABLE);
        spin_unlock_irq(&chip->mixer_lock);
        
        spin_lock_irq(&chip->reg_lock);
        /* enable interrupts */
        snd_als4k_gcr_write(chip, ALS4K_GCR8C_MISC_CTRL,
                                        ALS4K_GCR8C_IRQ_MASK_CTRL_ENABLE);

        /* SPECS_PAGE: 39 */
        for (i = ALS4K_GCR91_DMA0_ADDR; i <= ALS4K_GCR96_DMA3_MODE_COUNT; ++i)
                snd_als4k_gcr_write(chip, i, 0);
        
        snd_als4k_gcr_write(chip, ALS4K_GCR99_DMA_EMULATION_CTRL,
                snd_als4k_gcr_read(chip, ALS4K_GCR99_DMA_EMULATION_CTRL));
        spin_unlock_irq(&chip->reg_lock);
}

#ifdef SUPPORT_JOYSTICK
static int __devinit snd_als4000_create_gameport(struct snd_card_als4000 *acard, int dev)
{
        struct gameport *gp;
        struct resource *r;
        int io_port;

        if (joystick_port[dev] == 0)
                return -ENODEV;

        if (joystick_port[dev] == 1) { /* auto-detect */
                for (io_port = 0x200; io_port <= 0x218; io_port += 8) {
                        r = request_region(io_port, 8, "ALS4000 gameport");
                        if (r)
                                break;
                }
        } else {
                io_port = joystick_port[dev];
                r = request_region(io_port, 8, "ALS4000 gameport");
        }

        if (!r) {
                printk(KERN_WARNING "als4000: cannot reserve joystick ports\n");
                return -EBUSY;
        }

        acard->gameport = gp = gameport_allocate_port();
        if (!gp) {
                printk(KERN_ERR "als4000: cannot allocate memory for gameport\n");
                release_and_free_resource(r);
                return -ENOMEM;
        }

        gameport_set_name(gp, "ALS4000 Gameport");
        gameport_set_phys(gp, "pci%s/gameport0", pci_name(acard->pci));
        gameport_set_dev_parent(gp, &acard->pci->dev);
        gp->io = io_port;
        gameport_set_port_data(gp, r);

        /* Enable legacy joystick port */
        snd_als4000_set_addr(acard->iobase, 0, 0, 0, 1);

        gameport_register_port(acard->gameport);

        return 0;
}

static void snd_als4000_free_gameport(struct snd_card_als4000 *acard)
{
        if (acard->gameport) {
                struct resource *r = gameport_get_port_data(acard->gameport);

                gameport_unregister_port(acard->gameport);
                acard->gameport = NULL;

                /* disable joystick */
                snd_als4000_set_addr(acard->iobase, 0, 0, 0, 0);

                release_and_free_resource(r);
        }
}
#else
static inline int snd_als4000_create_gameport(struct snd_card_als4000 *acard, int dev) { return -ENOSYS; }
static inline void snd_als4000_free_gameport(struct snd_card_als4000 *acard) { }
#endif

static void snd_card_als4000_free( struct snd_card *card )
{
        struct snd_card_als4000 *acard = card->private_data;

        /* make sure that interrupts are disabled */
        snd_als4k_gcr_write_addr(acard->iobase, ALS4K_GCR8C_MISC_CTRL, 0);
        /* free resources */
        snd_als4000_free_gameport(acard);
        pci_release_regions(acard->pci);
        pci_disable_device(acard->pci);
}

static int __devinit snd_card_als4000_probe(struct pci_dev *pci,
                                          const struct pci_device_id *pci_id)
{
        static int dev;
        struct snd_card *card;
        struct snd_card_als4000 *acard;
        unsigned long iobase;
        struct snd_sb *chip;
        struct snd_opl3 *opl3;
        unsigned short word;
        int err;

        if (dev >= SNDRV_CARDS)
                return -ENODEV;
        if (!enable[dev]) {
                dev++;
                return -ENOENT;
        }

        /* enable PCI device */
        if ((err = pci_enable_device(pci)) < 0) {
                return err;
        }
        /* check, if we can restrict PCI DMA transfers to 24 bits */
        if (pci_set_dma_mask(pci, DMA_24BIT_MASK) < 0 ||
            pci_set_consistent_dma_mask(pci, DMA_24BIT_MASK) < 0) {
                snd_printk(KERN_ERR "architecture does not support 24bit PCI busmaster DMA\n");
                pci_disable_device(pci);
                return -ENXIO;
        }

        if ((err = pci_request_regions(pci, "ALS4000")) < 0) {
                pci_disable_device(pci);
                return err;
        }
        iobase = pci_resource_start(pci, 0);

        pci_read_config_word(pci, PCI_COMMAND, &word);
        pci_write_config_word(pci, PCI_COMMAND, word | PCI_COMMAND_IO);
        pci_set_master(pci);
        
        card = snd_card_new(index[dev], id[dev], THIS_MODULE, 
                            sizeof(*acard) /* private_data: acard */);
        if (card == NULL) {
                pci_release_regions(pci);
                pci_disable_device(pci);
                return -ENOMEM;
        }

        acard = card->private_data;
        acard->pci = pci;
        acard->iobase = iobase;
        card->private_free = snd_card_als4000_free;

        /* disable all legacy ISA stuff */
        snd_als4000_set_addr(acard->iobase, 0, 0, 0, 0);

        if ((err = snd_sbdsp_create(card,
                                    iobase + ALS4K_IOB_10_ADLIB_ADDR0,
                                    pci->irq,
                /* internally registered as IRQF_SHARED in case of ALS4000 SB */
                                    snd_als4000_interrupt,
                                    -1,
                                    -1,
                                    SB_HW_ALS4000,
                                    &chip)) < 0) {
                goto out_err;
        }
        acard->chip = chip;

        chip->pci = pci;
        chip->alt_port = iobase;
        snd_card_set_dev(card, &pci->dev);

        snd_als4000_configure(chip);

        strcpy(card->driver, "ALS4000");
        strcpy(card->shortname, "Avance Logic ALS4000");
        sprintf(card->longname, "%s at 0x%lx, irq %i",
                card->shortname, chip->alt_port, chip->irq);

        if ((err = snd_mpu401_uart_new( card, 0, MPU401_HW_ALS4000,
                                        iobase + ALS4K_IOB_30_MIDI_DATA,
                                        MPU401_INFO_INTEGRATED,
                                        pci->irq, 0, &chip->rmidi)) < 0) {
                printk(KERN_ERR "als4000: no MPU-401 device at 0x%lx?\n",
                                iobase + ALS4K_IOB_30_MIDI_DATA);
                goto out_err;
        }
        /* FIXME: ALS4000 has interesting MPU401 configuration features
         * at ALS4K_CR1A_MPU401_UART_MODE_CONTROL
         * (pass-thru / UART switching, fast MIDI clock, etc.),
         * however there doesn't seem to be an ALSA API for this...
         * SPECS_PAGE: 21 */

        if ((err = snd_als4000_pcm(chip, 0)) < 0) {
                goto out_err;
        }
        if ((err = snd_sbmixer_new(chip)) < 0) {
                goto out_err;
        }           

        if (snd_opl3_create(card,
                                iobase + ALS4K_IOB_10_ADLIB_ADDR0,
                                iobase + ALS4K_IOB_12_ADLIB_ADDR2,
                            OPL3_HW_AUTO, 1, &opl3) < 0) {
                printk(KERN_ERR "als4000: no OPL device at 0x%lx-0x%lx?\n",
                           iobase + ALS4K_IOB_10_ADLIB_ADDR0,
                           iobase + ALS4K_IOB_12_ADLIB_ADDR2);
        } else {
                if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
                        goto out_err;
                }
        }

        snd_als4000_create_gameport(acard, dev);

        if ((err = snd_card_register(card)) < 0) {
                goto out_err;
        }
        pci_set_drvdata(pci, card);
        dev++;
        err = 0;
        goto out;

out_err:
        snd_card_free(card);
        
out:
        return err;
}

static void __devexit snd_card_als4000_remove(struct pci_dev *pci)
{
        snd_card_free(pci_get_drvdata(pci));
        pci_set_drvdata(pci, NULL);
}

#ifdef CONFIG_PM
static int snd_als4000_suspend(struct pci_dev *pci, pm_message_t state)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct snd_card_als4000 *acard = card->private_data;
        struct snd_sb *chip = acard->chip;

        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
        
        snd_pcm_suspend_all(chip->pcm);
        snd_sbmixer_suspend(chip);

        pci_disable_device(pci);
        pci_save_state(pci);
        pci_set_power_state(pci, pci_choose_state(pci, state));
        return 0;
}

static int snd_als4000_resume(struct pci_dev *pci)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct snd_card_als4000 *acard = card->private_data;
        struct snd_sb *chip = acard->chip;

        pci_set_power_state(pci, PCI_D0);
        pci_restore_state(pci);
        if (pci_enable_device(pci) < 0) {
                printk(KERN_ERR "als4000: pci_enable_device failed, "
                       "disabling device\n");
                snd_card_disconnect(card);
                return -EIO;
        }
        pci_set_master(pci);

        snd_als4000_configure(chip);
        snd_sbdsp_reset(chip);
        snd_sbmixer_resume(chip);

#ifdef SUPPORT_JOYSTICK
        if (acard->gameport)
                snd_als4000_set_addr(acard->iobase, 0, 0, 0, 1);
#endif

        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
        return 0;
}
#endif /* CONFIG_PM */


static struct pci_driver driver = {
        .name = "ALS4000",
        .id_table = snd_als4000_ids,
        .probe = snd_card_als4000_probe,
        .remove = __devexit_p(snd_card_als4000_remove),
#ifdef CONFIG_PM
        .suspend = snd_als4000_suspend,
        .resume = snd_als4000_resume,
#endif
};

static int __init alsa_card_als4000_init(void)
{
        return pci_register_driver(&driver);
}

static void __exit alsa_card_als4000_exit(void)
{
        pci_unregister_driver(&driver);
}

module_init(alsa_card_als4000_init)
module_exit(alsa_card_als4000_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading