[funini.com] -> [kei@sodan] -> Kernel Reading

root/include/asm-x86/system.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. get_limit
  2. native_clts
  3. native_read_cr0
  4. native_write_cr0
  5. native_read_cr2
  6. native_write_cr2
  7. native_read_cr3
  8. native_write_cr3
  9. native_read_cr4
  10. native_read_cr4_safe
  11. native_write_cr4
  12. native_read_cr8
  13. native_write_cr8
  14. native_wbinvd
  15. clflush
  16. rdtsc_barrier

#ifndef ASM_X86__SYSTEM_H
#define ASM_X86__SYSTEM_H

#include <asm/asm.h>
#include <asm/segment.h>
#include <asm/cpufeature.h>
#include <asm/cmpxchg.h>
#include <asm/nops.h>

#include <linux/kernel.h>
#include <linux/irqflags.h>

/* entries in ARCH_DLINFO: */
#ifdef CONFIG_IA32_EMULATION
# define AT_VECTOR_SIZE_ARCH 2
#else
# define AT_VECTOR_SIZE_ARCH 1
#endif

#ifdef CONFIG_X86_32

struct task_struct; /* one of the stranger aspects of C forward declarations */
struct task_struct *__switch_to(struct task_struct *prev,
                                struct task_struct *next);

/*
 * Saving eflags is important. It switches not only IOPL between tasks,
 * it also protects other tasks from NT leaking through sysenter etc.
 */
#define switch_to(prev, next, last)                                     \
do {                                                                    \
        /*                                                              \
         * Context-switching clobbers all registers, so we clobber      \
         * them explicitly, via unused output variables.                \
         * (EAX and EBP is not listed because EBP is saved/restored     \
         * explicitly for wchan access and EAX is the return value of   \
         * __switch_to())                                               \
         */                                                             \
        unsigned long ebx, ecx, edx, esi, edi;                          \
                                                                        \
        asm volatile("pushfl\n\t"               /* save    flags */     \
                     "pushl %%ebp\n\t"          /* save    EBP   */     \
                     "movl %%esp,%[prev_sp]\n\t"        /* save    ESP   */ \
                     "movl %[next_sp],%%esp\n\t"        /* restore ESP   */ \
                     "movl $1f,%[prev_ip]\n\t"  /* save    EIP   */     \
                     "pushl %[next_ip]\n\t"     /* restore EIP   */     \
                     "jmp __switch_to\n"        /* regparm call  */     \
                     "1:\t"                                             \
                     "popl %%ebp\n\t"           /* restore EBP   */     \
                     "popfl\n"                  /* restore flags */     \
                                                                        \
                     /* output parameters */                            \
                     : [prev_sp] "=m" (prev->thread.sp),                \
                       [prev_ip] "=m" (prev->thread.ip),                \
                       "=a" (last),                                     \
                                                                        \
                       /* clobbered output registers: */                \
                       "=b" (ebx), "=c" (ecx), "=d" (edx),              \
                       "=S" (esi), "=D" (edi)                           \
                                                                        \
                       /* input parameters: */                          \
                     : [next_sp]  "m" (next->thread.sp),                \
                       [next_ip]  "m" (next->thread.ip),                \
                                                                        \
                       /* regparm parameters for __switch_to(): */      \
                       [prev]     "a" (prev),                           \
                       [next]     "d" (next)                            \
                                                                        \
                     : /* reloaded segment registers */                 \
                        "memory");                                      \
} while (0)

/*
 * disable hlt during certain critical i/o operations
 */
#define HAVE_DISABLE_HLT
#else
#define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
#define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"

/* frame pointer must be last for get_wchan */
#define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
#define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"

#define __EXTRA_CLOBBER  \
        , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
          "r12", "r13", "r14", "r15"

/* Save restore flags to clear handle leaking NT */
#define switch_to(prev, next, last) \
        asm volatile(SAVE_CONTEXT                                                   \
             "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
             "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
             "call __switch_to\n\t"                                       \
             ".globl thread_return\n"                                     \
             "thread_return:\n\t"                                         \
             "movq %%gs:%P[pda_pcurrent],%%rsi\n\t"                       \
             "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
             LOCK_PREFIX "btr  %[tif_fork],%P[ti_flags](%%r8)\n\t"        \
             "movq %%rax,%%rdi\n\t"                                       \
             "jc   ret_from_fork\n\t"                                     \
             RESTORE_CONTEXT                                              \
             : "=a" (last)                                                \
             : [next] "S" (next), [prev] "D" (prev),                      \
               [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
               [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
               [tif_fork] "i" (TIF_FORK),                                 \
               [thread_info] "i" (offsetof(struct task_struct, stack)),   \
               [pda_pcurrent] "i" (offsetof(struct x8664_pda, pcurrent))  \
             : "memory", "cc" __EXTRA_CLOBBER)
#endif

#ifdef __KERNEL__
#define _set_base(addr, base) do { unsigned long __pr; \
__asm__ __volatile__ ("movw %%dx,%1\n\t" \
        "rorl $16,%%edx\n\t" \
        "movb %%dl,%2\n\t" \
        "movb %%dh,%3" \
        :"=&d" (__pr) \
        :"m" (*((addr)+2)), \
         "m" (*((addr)+4)), \
         "m" (*((addr)+7)), \
         "0" (base) \
        ); } while (0)

#define _set_limit(addr, limit) do { unsigned long __lr; \
__asm__ __volatile__ ("movw %%dx,%1\n\t" \
        "rorl $16,%%edx\n\t" \
        "movb %2,%%dh\n\t" \
        "andb $0xf0,%%dh\n\t" \
        "orb %%dh,%%dl\n\t" \
        "movb %%dl,%2" \
        :"=&d" (__lr) \
        :"m" (*(addr)), \
         "m" (*((addr)+6)), \
         "0" (limit) \
        ); } while (0)

#define set_base(ldt, base) _set_base(((char *)&(ldt)) , (base))
#define set_limit(ldt, limit) _set_limit(((char *)&(ldt)) , ((limit)-1))

extern void native_load_gs_index(unsigned);

/*
 * Load a segment. Fall back on loading the zero
 * segment if something goes wrong..
 */
#define loadsegment(seg, value)                 \
        asm volatile("\n"                       \
                     "1:\t"                     \
                     "movl %k0,%%" #seg "\n"    \
                     "2:\n"                     \
                     ".section .fixup,\"ax\"\n" \
                     "3:\t"                     \
                     "movl %k1, %%" #seg "\n\t" \
                     "jmp 2b\n"                 \
                     ".previous\n"              \
                     _ASM_EXTABLE(1b,3b)        \
                     : :"r" (value), "r" (0) : "memory")


/*
 * Save a segment register away
 */
#define savesegment(seg, value)                         \
        asm("mov %%" #seg ",%0":"=r" (value) : : "memory")

static inline unsigned long get_limit(unsigned long segment)
{
        unsigned long __limit;
        asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
        return __limit + 1;
}

static inline void native_clts(void)
{
        asm volatile("clts");
}

/*
 * Volatile isn't enough to prevent the compiler from reordering the
 * read/write functions for the control registers and messing everything up.
 * A memory clobber would solve the problem, but would prevent reordering of
 * all loads stores around it, which can hurt performance. Solution is to
 * use a variable and mimic reads and writes to it to enforce serialization
 */
static unsigned long __force_order;

static inline unsigned long native_read_cr0(void)
{
        unsigned long val;
        asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
        return val;
}

static inline void native_write_cr0(unsigned long val)
{
        asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
}

static inline unsigned long native_read_cr2(void)
{
        unsigned long val;
        asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
        return val;
}

static inline void native_write_cr2(unsigned long val)
{
        asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
}

static inline unsigned long native_read_cr3(void)
{
        unsigned long val;
        asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
        return val;
}

static inline void native_write_cr3(unsigned long val)
{
        asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
}

static inline unsigned long native_read_cr4(void)
{
        unsigned long val;
        asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
        return val;
}

static inline unsigned long native_read_cr4_safe(void)
{
        unsigned long val;
        /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
         * exists, so it will never fail. */
#ifdef CONFIG_X86_32
        asm volatile("1: mov %%cr4, %0\n"
                     "2:\n"
                     _ASM_EXTABLE(1b, 2b)
                     : "=r" (val), "=m" (__force_order) : "0" (0));
#else
        val = native_read_cr4();
#endif
        return val;
}

static inline void native_write_cr4(unsigned long val)
{
        asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
}

#ifdef CONFIG_X86_64
static inline unsigned long native_read_cr8(void)
{
        unsigned long cr8;
        asm volatile("movq %%cr8,%0" : "=r" (cr8));
        return cr8;
}

static inline void native_write_cr8(unsigned long val)
{
        asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
}
#endif

static inline void native_wbinvd(void)
{
        asm volatile("wbinvd": : :"memory");
}

#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
#define read_cr0()      (native_read_cr0())
#define write_cr0(x)    (native_write_cr0(x))
#define read_cr2()      (native_read_cr2())
#define write_cr2(x)    (native_write_cr2(x))
#define read_cr3()      (native_read_cr3())
#define write_cr3(x)    (native_write_cr3(x))
#define read_cr4()      (native_read_cr4())
#define read_cr4_safe() (native_read_cr4_safe())
#define write_cr4(x)    (native_write_cr4(x))
#define wbinvd()        (native_wbinvd())
#ifdef CONFIG_X86_64
#define read_cr8()      (native_read_cr8())
#define write_cr8(x)    (native_write_cr8(x))
#define load_gs_index   native_load_gs_index
#endif

/* Clear the 'TS' bit */
#define clts()          (native_clts())

#endif/* CONFIG_PARAVIRT */

#define stts() write_cr0(read_cr0() | X86_CR0_TS)

#endif /* __KERNEL__ */

static inline void clflush(volatile void *__p)
{
        asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
}

#define nop() asm volatile ("nop")

void disable_hlt(void);
void enable_hlt(void);

void cpu_idle_wait(void);

extern unsigned long arch_align_stack(unsigned long sp);
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);

void default_idle(void);

/*
 * Force strict CPU ordering.
 * And yes, this is required on UP too when we're talking
 * to devices.
 */
#ifdef CONFIG_X86_32
/*
 * Some non-Intel clones support out of order store. wmb() ceases to be a
 * nop for these.
 */
#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
#else
#define mb()    asm volatile("mfence":::"memory")
#define rmb()   asm volatile("lfence":::"memory")
#define wmb()   asm volatile("sfence" ::: "memory")
#endif

/**
 * read_barrier_depends - Flush all pending reads that subsequents reads
 * depend on.
 *
 * No data-dependent reads from memory-like regions are ever reordered
 * over this barrier.  All reads preceding this primitive are guaranteed
 * to access memory (but not necessarily other CPUs' caches) before any
 * reads following this primitive that depend on the data return by
 * any of the preceding reads.  This primitive is much lighter weight than
 * rmb() on most CPUs, and is never heavier weight than is
 * rmb().
 *
 * These ordering constraints are respected by both the local CPU
 * and the compiler.
 *
 * Ordering is not guaranteed by anything other than these primitives,
 * not even by data dependencies.  See the documentation for
 * memory_barrier() for examples and URLs to more information.
 *
 * For example, the following code would force ordering (the initial
 * value of "a" is zero, "b" is one, and "p" is "&a"):
 *
 * <programlisting>
 *      CPU 0                           CPU 1
 *
 *      b = 2;
 *      memory_barrier();
 *      p = &b;                         q = p;
 *                                      read_barrier_depends();
 *                                      d = *q;
 * </programlisting>
 *
 * because the read of "*q" depends on the read of "p" and these
 * two reads are separated by a read_barrier_depends().  However,
 * the following code, with the same initial values for "a" and "b":
 *
 * <programlisting>
 *      CPU 0                           CPU 1
 *
 *      a = 2;
 *      memory_barrier();
 *      b = 3;                          y = b;
 *                                      read_barrier_depends();
 *                                      x = a;
 * </programlisting>
 *
 * does not enforce ordering, since there is no data dependency between
 * the read of "a" and the read of "b".  Therefore, on some CPUs, such
 * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
 * in cases like this where there are no data dependencies.
 **/

#define read_barrier_depends()  do { } while (0)

#ifdef CONFIG_SMP
#define smp_mb()        mb()
#ifdef CONFIG_X86_PPRO_FENCE
# define smp_rmb()      rmb()
#else
# define smp_rmb()      barrier()
#endif
#ifdef CONFIG_X86_OOSTORE
# define smp_wmb()      wmb()
#else
# define smp_wmb()      barrier()
#endif
#define smp_read_barrier_depends()      read_barrier_depends()
#define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
#else
#define smp_mb()        barrier()
#define smp_rmb()       barrier()
#define smp_wmb()       barrier()
#define smp_read_barrier_depends()      do { } while (0)
#define set_mb(var, value) do { var = value; barrier(); } while (0)
#endif

/*
 * Stop RDTSC speculation. This is needed when you need to use RDTSC
 * (or get_cycles or vread that possibly accesses the TSC) in a defined
 * code region.
 *
 * (Could use an alternative three way for this if there was one.)
 */
static inline void rdtsc_barrier(void)
{
        alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
        alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
}

#endif /* ASM_X86__SYSTEM_H */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading