[funini.com] -> [kei@sodan] -> Kernel Reading

root/net/core/filter.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __load_pointer
  2. load_pointer
  3. sk_filter
  4. sk_run_filter
  5. sk_chk_filter
  6. sk_filter_rcu_release
  7. sk_filter_delayed_uncharge
  8. sk_attach_filter
  9. sk_detach_filter

/*
 * Linux Socket Filter - Kernel level socket filtering
 *
 * Author:
 *     Jay Schulist <jschlst@samba.org>
 *
 * Based on the design of:
 *     - The Berkeley Packet Filter
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
 * Kris Katterjohn - Added many additional checks in sk_chk_filter()
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/netlink.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <linux/filter.h>

/* No hurry in this branch */
static void *__load_pointer(struct sk_buff *skb, int k)
{
        u8 *ptr = NULL;

        if (k >= SKF_NET_OFF)
                ptr = skb_network_header(skb) + k - SKF_NET_OFF;
        else if (k >= SKF_LL_OFF)
                ptr = skb_mac_header(skb) + k - SKF_LL_OFF;

        if (ptr >= skb->head && ptr < skb_tail_pointer(skb))
                return ptr;
        return NULL;
}

static inline void *load_pointer(struct sk_buff *skb, int k,
                                 unsigned int size, void *buffer)
{
        if (k >= 0)
                return skb_header_pointer(skb, k, size, buffer);
        else {
                if (k >= SKF_AD_OFF)
                        return NULL;
                return __load_pointer(skb, k);
        }
}

/**
 *      sk_filter - run a packet through a socket filter
 *      @sk: sock associated with &sk_buff
 *      @skb: buffer to filter
 *
 * Run the filter code and then cut skb->data to correct size returned by
 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
 * than pkt_len we keep whole skb->data. This is the socket level
 * wrapper to sk_run_filter. It returns 0 if the packet should
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
int sk_filter(struct sock *sk, struct sk_buff *skb)
{
        int err;
        struct sk_filter *filter;

        err = security_sock_rcv_skb(sk, skb);
        if (err)
                return err;

        rcu_read_lock_bh();
        filter = rcu_dereference(sk->sk_filter);
        if (filter) {
                unsigned int pkt_len = sk_run_filter(skb, filter->insns,
                                filter->len);
                err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
        }
        rcu_read_unlock_bh();

        return err;
}
EXPORT_SYMBOL(sk_filter);

/**
 *      sk_run_filter - run a filter on a socket
 *      @skb: buffer to run the filter on
 *      @filter: filter to apply
 *      @flen: length of filter
 *
 * Decode and apply filter instructions to the skb->data.
 * Return length to keep, 0 for none. skb is the data we are
 * filtering, filter is the array of filter instructions, and
 * len is the number of filter blocks in the array.
 */
unsigned int sk_run_filter(struct sk_buff *skb, struct sock_filter *filter, int flen)
{
        struct sock_filter *fentry;     /* We walk down these */
        void *ptr;
        u32 A = 0;                      /* Accumulator */
        u32 X = 0;                      /* Index Register */
        u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
        u32 tmp;
        int k;
        int pc;

        /*
         * Process array of filter instructions.
         */
        for (pc = 0; pc < flen; pc++) {
                fentry = &filter[pc];

                switch (fentry->code) {
                case BPF_ALU|BPF_ADD|BPF_X:
                        A += X;
                        continue;
                case BPF_ALU|BPF_ADD|BPF_K:
                        A += fentry->k;
                        continue;
                case BPF_ALU|BPF_SUB|BPF_X:
                        A -= X;
                        continue;
                case BPF_ALU|BPF_SUB|BPF_K:
                        A -= fentry->k;
                        continue;
                case BPF_ALU|BPF_MUL|BPF_X:
                        A *= X;
                        continue;
                case BPF_ALU|BPF_MUL|BPF_K:
                        A *= fentry->k;
                        continue;
                case BPF_ALU|BPF_DIV|BPF_X:
                        if (X == 0)
                                return 0;
                        A /= X;
                        continue;
                case BPF_ALU|BPF_DIV|BPF_K:
                        A /= fentry->k;
                        continue;
                case BPF_ALU|BPF_AND|BPF_X:
                        A &= X;
                        continue;
                case BPF_ALU|BPF_AND|BPF_K:
                        A &= fentry->k;
                        continue;
                case BPF_ALU|BPF_OR|BPF_X:
                        A |= X;
                        continue;
                case BPF_ALU|BPF_OR|BPF_K:
                        A |= fentry->k;
                        continue;
                case BPF_ALU|BPF_LSH|BPF_X:
                        A <<= X;
                        continue;
                case BPF_ALU|BPF_LSH|BPF_K:
                        A <<= fentry->k;
                        continue;
                case BPF_ALU|BPF_RSH|BPF_X:
                        A >>= X;
                        continue;
                case BPF_ALU|BPF_RSH|BPF_K:
                        A >>= fentry->k;
                        continue;
                case BPF_ALU|BPF_NEG:
                        A = -A;
                        continue;
                case BPF_JMP|BPF_JA:
                        pc += fentry->k;
                        continue;
                case BPF_JMP|BPF_JGT|BPF_K:
                        pc += (A > fentry->k) ? fentry->jt : fentry->jf;
                        continue;
                case BPF_JMP|BPF_JGE|BPF_K:
                        pc += (A >= fentry->k) ? fentry->jt : fentry->jf;
                        continue;
                case BPF_JMP|BPF_JEQ|BPF_K:
                        pc += (A == fentry->k) ? fentry->jt : fentry->jf;
                        continue;
                case BPF_JMP|BPF_JSET|BPF_K:
                        pc += (A & fentry->k) ? fentry->jt : fentry->jf;
                        continue;
                case BPF_JMP|BPF_JGT|BPF_X:
                        pc += (A > X) ? fentry->jt : fentry->jf;
                        continue;
                case BPF_JMP|BPF_JGE|BPF_X:
                        pc += (A >= X) ? fentry->jt : fentry->jf;
                        continue;
                case BPF_JMP|BPF_JEQ|BPF_X:
                        pc += (A == X) ? fentry->jt : fentry->jf;
                        continue;
                case BPF_JMP|BPF_JSET|BPF_X:
                        pc += (A & X) ? fentry->jt : fentry->jf;
                        continue;
                case BPF_LD|BPF_W|BPF_ABS:
                        k = fentry->k;
load_w:
                        ptr = load_pointer(skb, k, 4, &tmp);
                        if (ptr != NULL) {
                                A = get_unaligned_be32(ptr);
                                continue;
                        }
                        break;
                case BPF_LD|BPF_H|BPF_ABS:
                        k = fentry->k;
load_h:
                        ptr = load_pointer(skb, k, 2, &tmp);
                        if (ptr != NULL) {
                                A = get_unaligned_be16(ptr);
                                continue;
                        }
                        break;
                case BPF_LD|BPF_B|BPF_ABS:
                        k = fentry->k;
load_b:
                        ptr = load_pointer(skb, k, 1, &tmp);
                        if (ptr != NULL) {
                                A = *(u8 *)ptr;
                                continue;
                        }
                        break;
                case BPF_LD|BPF_W|BPF_LEN:
                        A = skb->len;
                        continue;
                case BPF_LDX|BPF_W|BPF_LEN:
                        X = skb->len;
                        continue;
                case BPF_LD|BPF_W|BPF_IND:
                        k = X + fentry->k;
                        goto load_w;
                case BPF_LD|BPF_H|BPF_IND:
                        k = X + fentry->k;
                        goto load_h;
                case BPF_LD|BPF_B|BPF_IND:
                        k = X + fentry->k;
                        goto load_b;
                case BPF_LDX|BPF_B|BPF_MSH:
                        ptr = load_pointer(skb, fentry->k, 1, &tmp);
                        if (ptr != NULL) {
                                X = (*(u8 *)ptr & 0xf) << 2;
                                continue;
                        }
                        return 0;
                case BPF_LD|BPF_IMM:
                        A = fentry->k;
                        continue;
                case BPF_LDX|BPF_IMM:
                        X = fentry->k;
                        continue;
                case BPF_LD|BPF_MEM:
                        A = mem[fentry->k];
                        continue;
                case BPF_LDX|BPF_MEM:
                        X = mem[fentry->k];
                        continue;
                case BPF_MISC|BPF_TAX:
                        X = A;
                        continue;
                case BPF_MISC|BPF_TXA:
                        A = X;
                        continue;
                case BPF_RET|BPF_K:
                        return fentry->k;
                case BPF_RET|BPF_A:
                        return A;
                case BPF_ST:
                        mem[fentry->k] = A;
                        continue;
                case BPF_STX:
                        mem[fentry->k] = X;
                        continue;
                default:
                        WARN_ON(1);
                        return 0;
                }

                /*
                 * Handle ancillary data, which are impossible
                 * (or very difficult) to get parsing packet contents.
                 */
                switch (k-SKF_AD_OFF) {
                case SKF_AD_PROTOCOL:
                        A = ntohs(skb->protocol);
                        continue;
                case SKF_AD_PKTTYPE:
                        A = skb->pkt_type;
                        continue;
                case SKF_AD_IFINDEX:
                        A = skb->dev->ifindex;
                        continue;
                case SKF_AD_NLATTR: {
                        struct nlattr *nla;

                        if (skb_is_nonlinear(skb))
                                return 0;
                        if (A > skb->len - sizeof(struct nlattr))
                                return 0;

                        nla = nla_find((struct nlattr *)&skb->data[A],
                                       skb->len - A, X);
                        if (nla)
                                A = (void *)nla - (void *)skb->data;
                        else
                                A = 0;
                        continue;
                }
                default:
                        return 0;
                }
        }

        return 0;
}
EXPORT_SYMBOL(sk_run_filter);

/**
 *      sk_chk_filter - verify socket filter code
 *      @filter: filter to verify
 *      @flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
 *
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
 */
int sk_chk_filter(struct sock_filter *filter, int flen)
{
        struct sock_filter *ftest;
        int pc;

        if (flen == 0 || flen > BPF_MAXINSNS)
                return -EINVAL;

        /* check the filter code now */
        for (pc = 0; pc < flen; pc++) {
                ftest = &filter[pc];

                /* Only allow valid instructions */
                switch (ftest->code) {
                case BPF_ALU|BPF_ADD|BPF_K:
                case BPF_ALU|BPF_ADD|BPF_X:
                case BPF_ALU|BPF_SUB|BPF_K:
                case BPF_ALU|BPF_SUB|BPF_X:
                case BPF_ALU|BPF_MUL|BPF_K:
                case BPF_ALU|BPF_MUL|BPF_X:
                case BPF_ALU|BPF_DIV|BPF_X:
                case BPF_ALU|BPF_AND|BPF_K:
                case BPF_ALU|BPF_AND|BPF_X:
                case BPF_ALU|BPF_OR|BPF_K:
                case BPF_ALU|BPF_OR|BPF_X:
                case BPF_ALU|BPF_LSH|BPF_K:
                case BPF_ALU|BPF_LSH|BPF_X:
                case BPF_ALU|BPF_RSH|BPF_K:
                case BPF_ALU|BPF_RSH|BPF_X:
                case BPF_ALU|BPF_NEG:
                case BPF_LD|BPF_W|BPF_ABS:
                case BPF_LD|BPF_H|BPF_ABS:
                case BPF_LD|BPF_B|BPF_ABS:
                case BPF_LD|BPF_W|BPF_LEN:
                case BPF_LD|BPF_W|BPF_IND:
                case BPF_LD|BPF_H|BPF_IND:
                case BPF_LD|BPF_B|BPF_IND:
                case BPF_LD|BPF_IMM:
                case BPF_LDX|BPF_W|BPF_LEN:
                case BPF_LDX|BPF_B|BPF_MSH:
                case BPF_LDX|BPF_IMM:
                case BPF_MISC|BPF_TAX:
                case BPF_MISC|BPF_TXA:
                case BPF_RET|BPF_K:
                case BPF_RET|BPF_A:
                        break;

                /* Some instructions need special checks */

                case BPF_ALU|BPF_DIV|BPF_K:
                        /* check for division by zero */
                        if (ftest->k == 0)
                                return -EINVAL;
                        break;

                case BPF_LD|BPF_MEM:
                case BPF_LDX|BPF_MEM:
                case BPF_ST:
                case BPF_STX:
                        /* check for invalid memory addresses */
                        if (ftest->k >= BPF_MEMWORDS)
                                return -EINVAL;
                        break;

                case BPF_JMP|BPF_JA:
                        /*
                         * Note, the large ftest->k might cause loops.
                         * Compare this with conditional jumps below,
                         * where offsets are limited. --ANK (981016)
                         */
                        if (ftest->k >= (unsigned)(flen-pc-1))
                                return -EINVAL;
                        break;

                case BPF_JMP|BPF_JEQ|BPF_K:
                case BPF_JMP|BPF_JEQ|BPF_X:
                case BPF_JMP|BPF_JGE|BPF_K:
                case BPF_JMP|BPF_JGE|BPF_X:
                case BPF_JMP|BPF_JGT|BPF_K:
                case BPF_JMP|BPF_JGT|BPF_X:
                case BPF_JMP|BPF_JSET|BPF_K:
                case BPF_JMP|BPF_JSET|BPF_X:
                        /* for conditionals both must be safe */
                        if (pc + ftest->jt + 1 >= flen ||
                            pc + ftest->jf + 1 >= flen)
                                return -EINVAL;
                        break;

                default:
                        return -EINVAL;
                }
        }

        return (BPF_CLASS(filter[flen - 1].code) == BPF_RET) ? 0 : -EINVAL;
}
EXPORT_SYMBOL(sk_chk_filter);

/**
 *      sk_filter_rcu_release: Release a socket filter by rcu_head
 *      @rcu: rcu_head that contains the sk_filter to free
 */
static void sk_filter_rcu_release(struct rcu_head *rcu)
{
        struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

        sk_filter_release(fp);
}

static void sk_filter_delayed_uncharge(struct sock *sk, struct sk_filter *fp)
{
        unsigned int size = sk_filter_len(fp);

        atomic_sub(size, &sk->sk_omem_alloc);
        call_rcu_bh(&fp->rcu, sk_filter_rcu_release);
}

/**
 *      sk_attach_filter - attach a socket filter
 *      @fprog: the filter program
 *      @sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
        struct sk_filter *fp, *old_fp;
        unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
        int err;

        /* Make sure new filter is there and in the right amounts. */
        if (fprog->filter == NULL)
                return -EINVAL;

        fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
        if (!fp)
                return -ENOMEM;
        if (copy_from_user(fp->insns, fprog->filter, fsize)) {
                sock_kfree_s(sk, fp, fsize+sizeof(*fp));
                return -EFAULT;
        }

        atomic_set(&fp->refcnt, 1);
        fp->len = fprog->len;

        err = sk_chk_filter(fp->insns, fp->len);
        if (err) {
                sk_filter_uncharge(sk, fp);
                return err;
        }

        rcu_read_lock_bh();
        old_fp = rcu_dereference(sk->sk_filter);
        rcu_assign_pointer(sk->sk_filter, fp);
        rcu_read_unlock_bh();

        if (old_fp)
                sk_filter_delayed_uncharge(sk, old_fp);
        return 0;
}

int sk_detach_filter(struct sock *sk)
{
        int ret = -ENOENT;
        struct sk_filter *filter;

        rcu_read_lock_bh();
        filter = rcu_dereference(sk->sk_filter);
        if (filter) {
                rcu_assign_pointer(sk->sk_filter, NULL);
                sk_filter_delayed_uncharge(sk, filter);
                ret = 0;
        }
        rcu_read_unlock_bh();
        return ret;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading