[funini.com] -> [kei@sodan] -> Kernel Reading

root/include/asm-parisc/dma-mapping.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. dma_alloc_coherent
  2. dma_alloc_noncoherent
  3. dma_free_coherent
  4. dma_free_noncoherent
  5. dma_map_single
  6. dma_unmap_single
  7. dma_map_sg
  8. dma_unmap_sg
  9. dma_map_page
  10. dma_unmap_page
  11. dma_sync_single_for_cpu
  12. dma_sync_single_for_device
  13. dma_sync_single_range_for_cpu
  14. dma_sync_single_range_for_device
  15. dma_sync_sg_for_cpu
  16. dma_sync_sg_for_device
  17. dma_supported
  18. dma_set_mask
  19. dma_get_cache_alignment
  20. dma_is_consistent
  21. dma_cache_sync
  22. parisc_walk_tree

#ifndef _PARISC_DMA_MAPPING_H
#define _PARISC_DMA_MAPPING_H

#include <linux/mm.h>
#include <asm/cacheflush.h>
#include <asm/scatterlist.h>

/* See Documentation/DMA-mapping.txt */
struct hppa_dma_ops {
        int  (*dma_supported)(struct device *dev, u64 mask);
        void *(*alloc_consistent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag);
        void *(*alloc_noncoherent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag);
        void (*free_consistent)(struct device *dev, size_t size, void *vaddr, dma_addr_t iova);
        dma_addr_t (*map_single)(struct device *dev, void *addr, size_t size, enum dma_data_direction direction);
        void (*unmap_single)(struct device *dev, dma_addr_t iova, size_t size, enum dma_data_direction direction);
        int  (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction);
        void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nhwents, enum dma_data_direction direction);
        void (*dma_sync_single_for_cpu)(struct device *dev, dma_addr_t iova, unsigned long offset, size_t size, enum dma_data_direction direction);
        void (*dma_sync_single_for_device)(struct device *dev, dma_addr_t iova, unsigned long offset, size_t size, enum dma_data_direction direction);
        void (*dma_sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction);
        void (*dma_sync_sg_for_device)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction);
};

/*
** We could live without the hppa_dma_ops indirection if we didn't want
** to support 4 different coherent dma models with one binary (they will
** someday be loadable modules):
**     I/O MMU        consistent method           dma_sync behavior
**  =============   ======================       =======================
**  a) PA-7x00LC    uncachable host memory          flush/purge
**  b) U2/Uturn      cachable host memory              NOP
**  c) Ike/Astro     cachable host memory              NOP
**  d) EPIC/SAGA     memory on EPIC/SAGA         flush/reset DMA channel
**
** PA-7[13]00LC processors have a GSC bus interface and no I/O MMU.
**
** Systems (eg PCX-T workstations) that don't fall into the above
** categories will need to modify the needed drivers to perform
** flush/purge and allocate "regular" cacheable pages for everything.
*/

#ifdef CONFIG_PA11
extern struct hppa_dma_ops pcxl_dma_ops;
extern struct hppa_dma_ops pcx_dma_ops;
#endif

extern struct hppa_dma_ops *hppa_dma_ops;

static inline void *
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
                   gfp_t flag)
{
        return hppa_dma_ops->alloc_consistent(dev, size, dma_handle, flag);
}

static inline void *
dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
                      gfp_t flag)
{
        return hppa_dma_ops->alloc_noncoherent(dev, size, dma_handle, flag);
}

static inline void
dma_free_coherent(struct device *dev, size_t size, 
                    void *vaddr, dma_addr_t dma_handle)
{
        hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle);
}

static inline void
dma_free_noncoherent(struct device *dev, size_t size, 
                    void *vaddr, dma_addr_t dma_handle)
{
        hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle);
}

static inline dma_addr_t
dma_map_single(struct device *dev, void *ptr, size_t size,
               enum dma_data_direction direction)
{
        return hppa_dma_ops->map_single(dev, ptr, size, direction);
}

static inline void
dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
                 enum dma_data_direction direction)
{
        hppa_dma_ops->unmap_single(dev, dma_addr, size, direction);
}

static inline int
dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
           enum dma_data_direction direction)
{
        return hppa_dma_ops->map_sg(dev, sg, nents, direction);
}

static inline void
dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
             enum dma_data_direction direction)
{
        hppa_dma_ops->unmap_sg(dev, sg, nhwentries, direction);
}

static inline dma_addr_t
dma_map_page(struct device *dev, struct page *page, unsigned long offset,
             size_t size, enum dma_data_direction direction)
{
        return dma_map_single(dev, (page_address(page) + (offset)), size, direction);
}

static inline void
dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
               enum dma_data_direction direction)
{
        dma_unmap_single(dev, dma_address, size, direction);
}


static inline void
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
                enum dma_data_direction direction)
{
        if(hppa_dma_ops->dma_sync_single_for_cpu)
                hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, 0, size, direction);
}

static inline void
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
                enum dma_data_direction direction)
{
        if(hppa_dma_ops->dma_sync_single_for_device)
                hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, 0, size, direction);
}

static inline void
dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
                      unsigned long offset, size_t size,
                      enum dma_data_direction direction)
{
        if(hppa_dma_ops->dma_sync_single_for_cpu)
                hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, offset, size, direction);
}

static inline void
dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
                      unsigned long offset, size_t size,
                      enum dma_data_direction direction)
{
        if(hppa_dma_ops->dma_sync_single_for_device)
                hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, offset, size, direction);
}

static inline void
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
                 enum dma_data_direction direction)
{
        if(hppa_dma_ops->dma_sync_sg_for_cpu)
                hppa_dma_ops->dma_sync_sg_for_cpu(dev, sg, nelems, direction);
}

static inline void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
                 enum dma_data_direction direction)
{
        if(hppa_dma_ops->dma_sync_sg_for_device)
                hppa_dma_ops->dma_sync_sg_for_device(dev, sg, nelems, direction);
}

static inline int
dma_supported(struct device *dev, u64 mask)
{
        return hppa_dma_ops->dma_supported(dev, mask);
}

static inline int
dma_set_mask(struct device *dev, u64 mask)
{
        if(!dev->dma_mask || !dma_supported(dev, mask))
                return -EIO;

        *dev->dma_mask = mask;

        return 0;
}

static inline int
dma_get_cache_alignment(void)
{
        return dcache_stride;
}

static inline int
dma_is_consistent(struct device *dev, dma_addr_t dma_addr)
{
        return (hppa_dma_ops->dma_sync_single_for_cpu == NULL);
}

static inline void
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
               enum dma_data_direction direction)
{
        if(hppa_dma_ops->dma_sync_single_for_cpu)
                flush_kernel_dcache_range((unsigned long)vaddr, size);
}

static inline void *
parisc_walk_tree(struct device *dev)
{
        struct device *otherdev;
        if(likely(dev->platform_data != NULL))
                return dev->platform_data;
        /* OK, just traverse the bus to find it */
        for(otherdev = dev->parent; otherdev;
            otherdev = otherdev->parent) {
                if(otherdev->platform_data) {
                        dev->platform_data = otherdev->platform_data;
                        break;
                }
        }
        BUG_ON(!dev->platform_data);
        return dev->platform_data;
}
                
#define GET_IOC(dev) (HBA_DATA(parisc_walk_tree(dev))->iommu);  
        

#ifdef CONFIG_IOMMU_CCIO
struct parisc_device;
struct ioc;
void * ccio_get_iommu(const struct parisc_device *dev);
int ccio_request_resource(const struct parisc_device *dev,
                struct resource *res);
int ccio_allocate_resource(const struct parisc_device *dev,
                struct resource *res, unsigned long size,
                unsigned long min, unsigned long max, unsigned long align);
#else /* !CONFIG_IOMMU_CCIO */
#define ccio_get_iommu(dev) NULL
#define ccio_request_resource(dev, res) insert_resource(&iomem_resource, res)
#define ccio_allocate_resource(dev, res, size, min, max, align) \
                allocate_resource(&iomem_resource, res, size, min, max, \
                                align, NULL, NULL)
#endif /* !CONFIG_IOMMU_CCIO */

#ifdef CONFIG_IOMMU_SBA
struct parisc_device;
void * sba_get_iommu(struct parisc_device *dev);
#endif

/* At the moment, we panic on error for IOMMU resource exaustion */
#define dma_mapping_error(dev, x)       0

#endif

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading