[funini.com] -> [kei@sodan] -> Kernel Reading

root/crypto/async_tx/async_tx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. async_tx_issue_pending_all
  2. dma_wait_for_async_tx
  3. async_tx_run_dependencies
  4. free_dma_chan_ref
  5. init_dma_chan_ref
  6. get_chan_ref_by_cap
  7. async_tx_rebalance
  8. dma_channel_add_remove
  9. async_tx_init
  10. async_tx_exit
  11. __async_tx_find_channel
  12. async_tx_init
  13. async_tx_exit
  14. async_tx_channel_switch
  15. async_tx_submit
  16. async_trigger_callback
  17. async_tx_quiesce

/*
 * core routines for the asynchronous memory transfer/transform api
 *
 * Copyright © 2006, Intel Corporation.
 *
 *      Dan Williams <dan.j.williams@intel.com>
 *
 *      with architecture considerations by:
 *      Neil Brown <neilb@suse.de>
 *      Jeff Garzik <jeff@garzik.org>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/rculist.h>
#include <linux/kernel.h>
#include <linux/async_tx.h>

#ifdef CONFIG_DMA_ENGINE
static enum dma_state_client
dma_channel_add_remove(struct dma_client *client,
        struct dma_chan *chan, enum dma_state state);

static struct dma_client async_tx_dma = {
        .event_callback = dma_channel_add_remove,
        /* .cap_mask == 0 defaults to all channels */
};

/**
 * dma_cap_mask_all - enable iteration over all operation types
 */
static dma_cap_mask_t dma_cap_mask_all;

/**
 * chan_ref_percpu - tracks channel allocations per core/opertion
 */
struct chan_ref_percpu {
        struct dma_chan_ref *ref;
};

static int channel_table_initialized;
static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END];

/**
 * async_tx_lock - protect modification of async_tx_master_list and serialize
 *      rebalance operations
 */
static spinlock_t async_tx_lock;

static LIST_HEAD(async_tx_master_list);

/* async_tx_issue_pending_all - start all transactions on all channels */
void async_tx_issue_pending_all(void)
{
        struct dma_chan_ref *ref;

        rcu_read_lock();
        list_for_each_entry_rcu(ref, &async_tx_master_list, node)
                ref->chan->device->device_issue_pending(ref->chan);
        rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(async_tx_issue_pending_all);

/* dma_wait_for_async_tx - spin wait for a transcation to complete
 * @tx: transaction to wait on
 */
enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
{
        enum dma_status status;
        struct dma_async_tx_descriptor *iter;
        struct dma_async_tx_descriptor *parent;

        if (!tx)
                return DMA_SUCCESS;

        /* poll through the dependency chain, return when tx is complete */
        do {
                iter = tx;

                /* find the root of the unsubmitted dependency chain */
                do {
                        parent = iter->parent;
                        if (!parent)
                                break;
                        else
                                iter = parent;
                } while (parent);

                /* there is a small window for ->parent == NULL and
                 * ->cookie == -EBUSY
                 */
                while (iter->cookie == -EBUSY)
                        cpu_relax();

                status = dma_sync_wait(iter->chan, iter->cookie);
        } while (status == DMA_IN_PROGRESS || (iter != tx));

        return status;
}
EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);

/* async_tx_run_dependencies - helper routine for dma drivers to process
 *      (start) dependent operations on their target channel
 * @tx: transaction with dependencies
 */
void
async_tx_run_dependencies(struct dma_async_tx_descriptor *tx)
{
        struct dma_async_tx_descriptor *next = tx->next;
        struct dma_chan *chan;

        if (!next)
                return;

        tx->next = NULL;
        chan = next->chan;

        /* keep submitting up until a channel switch is detected
         * in that case we will be called again as a result of
         * processing the interrupt from async_tx_channel_switch
         */
        while (next && next->chan == chan) {
                struct dma_async_tx_descriptor *_next;

                spin_lock_bh(&next->lock);
                next->parent = NULL;
                _next = next->next;
                if (_next && _next->chan == chan)
                        next->next = NULL;
                spin_unlock_bh(&next->lock);

                next->tx_submit(next);
                next = _next;
        }

        chan->device->device_issue_pending(chan);
}
EXPORT_SYMBOL_GPL(async_tx_run_dependencies);

static void
free_dma_chan_ref(struct rcu_head *rcu)
{
        struct dma_chan_ref *ref;
        ref = container_of(rcu, struct dma_chan_ref, rcu);
        kfree(ref);
}

static void
init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan)
{
        INIT_LIST_HEAD(&ref->node);
        INIT_RCU_HEAD(&ref->rcu);
        ref->chan = chan;
        atomic_set(&ref->count, 0);
}

/**
 * get_chan_ref_by_cap - returns the nth channel of the given capability
 *      defaults to returning the channel with the desired capability and the
 *      lowest reference count if the index can not be satisfied
 * @cap: capability to match
 * @index: nth channel desired, passing -1 has the effect of forcing the
 *  default return value
 */
static struct dma_chan_ref *
get_chan_ref_by_cap(enum dma_transaction_type cap, int index)
{
        struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref;

        rcu_read_lock();
        list_for_each_entry_rcu(ref, &async_tx_master_list, node)
                if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
                        if (!min_ref)
                                min_ref = ref;
                        else if (atomic_read(&ref->count) <
                                atomic_read(&min_ref->count))
                                min_ref = ref;

                        if (index-- == 0) {
                                ret_ref = ref;
                                break;
                        }
                }
        rcu_read_unlock();

        if (!ret_ref)
                ret_ref = min_ref;

        if (ret_ref)
                atomic_inc(&ret_ref->count);

        return ret_ref;
}

/**
 * async_tx_rebalance - redistribute the available channels, optimize
 * for cpu isolation in the SMP case, and opertaion isolation in the
 * uniprocessor case
 */
static void async_tx_rebalance(void)
{
        int cpu, cap, cpu_idx = 0;
        unsigned long flags;

        if (!channel_table_initialized)
                return;

        spin_lock_irqsave(&async_tx_lock, flags);

        /* undo the last distribution */
        for_each_dma_cap_mask(cap, dma_cap_mask_all)
                for_each_possible_cpu(cpu) {
                        struct dma_chan_ref *ref =
                                per_cpu_ptr(channel_table[cap], cpu)->ref;
                        if (ref) {
                                atomic_set(&ref->count, 0);
                                per_cpu_ptr(channel_table[cap], cpu)->ref =
                                                                        NULL;
                        }
                }

        for_each_dma_cap_mask(cap, dma_cap_mask_all)
                for_each_online_cpu(cpu) {
                        struct dma_chan_ref *new;
                        if (NR_CPUS > 1)
                                new = get_chan_ref_by_cap(cap, cpu_idx++);
                        else
                                new = get_chan_ref_by_cap(cap, -1);

                        per_cpu_ptr(channel_table[cap], cpu)->ref = new;
                }

        spin_unlock_irqrestore(&async_tx_lock, flags);
}

static enum dma_state_client
dma_channel_add_remove(struct dma_client *client,
        struct dma_chan *chan, enum dma_state state)
{
        unsigned long found, flags;
        struct dma_chan_ref *master_ref, *ref;
        enum dma_state_client ack = DMA_DUP; /* default: take no action */

        switch (state) {
        case DMA_RESOURCE_AVAILABLE:
                found = 0;
                rcu_read_lock();
                list_for_each_entry_rcu(ref, &async_tx_master_list, node)
                        if (ref->chan == chan) {
                                found = 1;
                                break;
                        }
                rcu_read_unlock();

                pr_debug("async_tx: dma resource available [%s]\n",
                        found ? "old" : "new");

                if (!found)
                        ack = DMA_ACK;
                else
                        break;

                /* add the channel to the generic management list */
                master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL);
                if (master_ref) {
                        /* keep a reference until async_tx is unloaded */
                        dma_chan_get(chan);
                        init_dma_chan_ref(master_ref, chan);
                        spin_lock_irqsave(&async_tx_lock, flags);
                        list_add_tail_rcu(&master_ref->node,
                                &async_tx_master_list);
                        spin_unlock_irqrestore(&async_tx_lock,
                                flags);
                } else {
                        printk(KERN_WARNING "async_tx: unable to create"
                                " new master entry in response to"
                                " a DMA_RESOURCE_ADDED event"
                                " (-ENOMEM)\n");
                        return 0;
                }

                async_tx_rebalance();
                break;
        case DMA_RESOURCE_REMOVED:
                found = 0;
                spin_lock_irqsave(&async_tx_lock, flags);
                list_for_each_entry(ref, &async_tx_master_list, node)
                        if (ref->chan == chan) {
                                /* permit backing devices to go away */
                                dma_chan_put(ref->chan);
                                list_del_rcu(&ref->node);
                                call_rcu(&ref->rcu, free_dma_chan_ref);
                                found = 1;
                                break;
                        }
                spin_unlock_irqrestore(&async_tx_lock, flags);

                pr_debug("async_tx: dma resource removed [%s]\n",
                        found ? "ours" : "not ours");

                if (found)
                        ack = DMA_ACK;
                else
                        break;

                async_tx_rebalance();
                break;
        case DMA_RESOURCE_SUSPEND:
        case DMA_RESOURCE_RESUME:
                printk(KERN_WARNING "async_tx: does not support dma channel"
                        " suspend/resume\n");
                break;
        default:
                BUG();
        }

        return ack;
}

static int __init
async_tx_init(void)
{
        enum dma_transaction_type cap;

        spin_lock_init(&async_tx_lock);
        bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);

        /* an interrupt will never be an explicit operation type.
         * clearing this bit prevents allocation to a slot in 'channel_table'
         */
        clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);

        for_each_dma_cap_mask(cap, dma_cap_mask_all) {
                channel_table[cap] = alloc_percpu(struct chan_ref_percpu);
                if (!channel_table[cap])
                        goto err;
        }

        channel_table_initialized = 1;
        dma_async_client_register(&async_tx_dma);
        dma_async_client_chan_request(&async_tx_dma);

        printk(KERN_INFO "async_tx: api initialized (async)\n");

        return 0;
err:
        printk(KERN_ERR "async_tx: initialization failure\n");

        while (--cap >= 0)
                free_percpu(channel_table[cap]);

        return 1;
}

static void __exit async_tx_exit(void)
{
        enum dma_transaction_type cap;

        channel_table_initialized = 0;

        for_each_dma_cap_mask(cap, dma_cap_mask_all)
                if (channel_table[cap])
                        free_percpu(channel_table[cap]);

        dma_async_client_unregister(&async_tx_dma);
}

/**
 * __async_tx_find_channel - find a channel to carry out the operation or let
 *      the transaction execute synchronously
 * @depend_tx: transaction dependency
 * @tx_type: transaction type
 */
struct dma_chan *
__async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
        enum dma_transaction_type tx_type)
{
        /* see if we can keep the chain on one channel */
        if (depend_tx &&
                dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
                return depend_tx->chan;
        else if (likely(channel_table_initialized)) {
                struct dma_chan_ref *ref;
                int cpu = get_cpu();
                ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref;
                put_cpu();
                return ref ? ref->chan : NULL;
        } else
                return NULL;
}
EXPORT_SYMBOL_GPL(__async_tx_find_channel);
#else
static int __init async_tx_init(void)
{
        printk(KERN_INFO "async_tx: api initialized (sync-only)\n");
        return 0;
}

static void __exit async_tx_exit(void)
{
        do { } while (0);
}
#endif


/**
 * async_tx_channel_switch - queue an interrupt descriptor with a dependency
 *      pre-attached.
 * @depend_tx: the operation that must finish before the new operation runs
 * @tx: the new operation
 */
static void
async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
                        struct dma_async_tx_descriptor *tx)
{
        struct dma_chan *chan;
        struct dma_device *device;
        struct dma_async_tx_descriptor *intr_tx = (void *) ~0;

        /* first check to see if we can still append to depend_tx */
        spin_lock_bh(&depend_tx->lock);
        if (depend_tx->parent && depend_tx->chan == tx->chan) {
                tx->parent = depend_tx;
                depend_tx->next = tx;
                intr_tx = NULL;
        }
        spin_unlock_bh(&depend_tx->lock);

        if (!intr_tx)
                return;

        chan = depend_tx->chan;
        device = chan->device;

        /* see if we can schedule an interrupt
         * otherwise poll for completion
         */
        if (dma_has_cap(DMA_INTERRUPT, device->cap_mask))
                intr_tx = device->device_prep_dma_interrupt(chan, 0);
        else
                intr_tx = NULL;

        if (intr_tx) {
                intr_tx->callback = NULL;
                intr_tx->callback_param = NULL;
                tx->parent = intr_tx;
                /* safe to set ->next outside the lock since we know we are
                 * not submitted yet
                 */
                intr_tx->next = tx;

                /* check if we need to append */
                spin_lock_bh(&depend_tx->lock);
                if (depend_tx->parent) {
                        intr_tx->parent = depend_tx;
                        depend_tx->next = intr_tx;
                        async_tx_ack(intr_tx);
                        intr_tx = NULL;
                }
                spin_unlock_bh(&depend_tx->lock);

                if (intr_tx) {
                        intr_tx->parent = NULL;
                        intr_tx->tx_submit(intr_tx);
                        async_tx_ack(intr_tx);
                }
        } else {
                if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
                        panic("%s: DMA_ERROR waiting for depend_tx\n",
                              __func__);
                tx->tx_submit(tx);
        }
}


/**
 * submit_disposition - while holding depend_tx->lock we must avoid submitting
 *      new operations to prevent a circular locking dependency with
 *      drivers that already hold a channel lock when calling
 *      async_tx_run_dependencies.
 * @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock
 * @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch
 * @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly
 */
enum submit_disposition {
        ASYNC_TX_SUBMITTED,
        ASYNC_TX_CHANNEL_SWITCH,
        ASYNC_TX_DIRECT_SUBMIT,
};

void
async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
        enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
        dma_async_tx_callback cb_fn, void *cb_param)
{
        tx->callback = cb_fn;
        tx->callback_param = cb_param;

        if (depend_tx) {
                enum submit_disposition s;

                /* sanity check the dependency chain:
                 * 1/ if ack is already set then we cannot be sure
                 * we are referring to the correct operation
                 * 2/ dependencies are 1:1 i.e. two transactions can
                 * not depend on the same parent
                 */
                BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next ||
                       tx->parent);

                /* the lock prevents async_tx_run_dependencies from missing
                 * the setting of ->next when ->parent != NULL
                 */
                spin_lock_bh(&depend_tx->lock);
                if (depend_tx->parent) {
                        /* we have a parent so we can not submit directly
                         * if we are staying on the same channel: append
                         * else: channel switch
                         */
                        if (depend_tx->chan == chan) {
                                tx->parent = depend_tx;
                                depend_tx->next = tx;
                                s = ASYNC_TX_SUBMITTED;
                        } else
                                s = ASYNC_TX_CHANNEL_SWITCH;
                } else {
                        /* we do not have a parent so we may be able to submit
                         * directly if we are staying on the same channel
                         */
                        if (depend_tx->chan == chan)
                                s = ASYNC_TX_DIRECT_SUBMIT;
                        else
                                s = ASYNC_TX_CHANNEL_SWITCH;
                }
                spin_unlock_bh(&depend_tx->lock);

                switch (s) {
                case ASYNC_TX_SUBMITTED:
                        break;
                case ASYNC_TX_CHANNEL_SWITCH:
                        async_tx_channel_switch(depend_tx, tx);
                        break;
                case ASYNC_TX_DIRECT_SUBMIT:
                        tx->parent = NULL;
                        tx->tx_submit(tx);
                        break;
                }
        } else {
                tx->parent = NULL;
                tx->tx_submit(tx);
        }

        if (flags & ASYNC_TX_ACK)
                async_tx_ack(tx);

        if (depend_tx && (flags & ASYNC_TX_DEP_ACK))
                async_tx_ack(depend_tx);
}
EXPORT_SYMBOL_GPL(async_tx_submit);

/**
 * async_trigger_callback - schedules the callback function to be run after
 * any dependent operations have been completed.
 * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
 * @depend_tx: 'callback' requires the completion of this transaction
 * @cb_fn: function to call after depend_tx completes
 * @cb_param: parameter to pass to the callback routine
 */
struct dma_async_tx_descriptor *
async_trigger_callback(enum async_tx_flags flags,
        struct dma_async_tx_descriptor *depend_tx,
        dma_async_tx_callback cb_fn, void *cb_param)
{
        struct dma_chan *chan;
        struct dma_device *device;
        struct dma_async_tx_descriptor *tx;

        if (depend_tx) {
                chan = depend_tx->chan;
                device = chan->device;

                /* see if we can schedule an interrupt
                 * otherwise poll for completion
                 */
                if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
                        device = NULL;

                tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL;
        } else
                tx = NULL;

        if (tx) {
                pr_debug("%s: (async)\n", __func__);

                async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
        } else {
                pr_debug("%s: (sync)\n", __func__);

                /* wait for any prerequisite operations */
                async_tx_quiesce(&depend_tx);

                async_tx_sync_epilog(cb_fn, cb_param);
        }

        return tx;
}
EXPORT_SYMBOL_GPL(async_trigger_callback);

/**
 * async_tx_quiesce - ensure tx is complete and freeable upon return
 * @tx - transaction to quiesce
 */
void async_tx_quiesce(struct dma_async_tx_descriptor **tx)
{
        if (*tx) {
                /* if ack is already set then we cannot be sure
                 * we are referring to the correct operation
                 */
                BUG_ON(async_tx_test_ack(*tx));
                if (dma_wait_for_async_tx(*tx) == DMA_ERROR)
                        panic("DMA_ERROR waiting for transaction\n");
                async_tx_ack(*tx);
                *tx = NULL;
        }
}
EXPORT_SYMBOL_GPL(async_tx_quiesce);

module_init(async_tx_init);
module_exit(async_tx_exit);

MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading