[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/configfs/dir.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. configfs_d_iput
  2. configfs_d_delete
  3. configfs_new_dirent
  4. configfs_dirent_exists
  5. configfs_make_dirent
  6. init_dir
  7. configfs_init_file
  8. init_symlink
  9. create_dir
  10. configfs_create_dir
  11. configfs_dir_set_ready
  12. configfs_dirent_is_ready
  13. configfs_create_link
  14. remove_dir
  15. configfs_remove_dir
  16. configfs_attach_attr
  17. configfs_lookup
  18. configfs_detach_prep
  19. configfs_detach_rollback
  20. detach_attrs
  21. populate_attrs
  22. detach_groups
  23. create_default_group
  24. populate_groups
  25. unlink_obj
  26. link_obj
  27. unlink_group
  28. link_group
  29. configfs_attach_item
  30. configfs_detach_item
  31. configfs_attach_group
  32. configfs_detach_group
  33. client_disconnect_notify
  34. client_drop_item
  35. configfs_dump_one
  36. configfs_dump
  37. configfs_depend_prep
  38. configfs_depend_rollback
  39. configfs_depend_item
  40. configfs_undepend_item
  41. configfs_mkdir
  42. configfs_rmdir
  43. configfs_rename_dir
  44. configfs_dir_open
  45. configfs_dir_close
  46. dt_type
  47. configfs_readdir
  48. configfs_dir_lseek
  49. configfs_register_subsystem
  50. configfs_unregister_subsystem

/* -*- mode: c; c-basic-offset: 8; -*-
 * vim: noexpandtab sw=8 ts=8 sts=0:
 *
 * dir.c - Operations for configfs directories.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 *
 * Based on sysfs:
 *      sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
 *
 * configfs Copyright (C) 2005 Oracle.  All rights reserved.
 */

#undef DEBUG

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>

#include <linux/configfs.h>
#include "configfs_internal.h"

DECLARE_RWSEM(configfs_rename_sem);
/*
 * Protects mutations of configfs_dirent linkage together with proper i_mutex
 * Also protects mutations of symlinks linkage to target configfs_dirent
 * Mutators of configfs_dirent linkage must *both* have the proper inode locked
 * and configfs_dirent_lock locked, in that order.
 * This allows one to safely traverse configfs_dirent trees and symlinks without
 * having to lock inodes.
 *
 * Protects setting of CONFIGFS_USET_DROPPING: checking the flag
 * unlocked is not reliable unless in detach_groups() called from
 * rmdir()/unregister() and from configfs_attach_group()
 */
DEFINE_SPINLOCK(configfs_dirent_lock);

static void configfs_d_iput(struct dentry * dentry,
                            struct inode * inode)
{
        struct configfs_dirent * sd = dentry->d_fsdata;

        if (sd) {
                BUG_ON(sd->s_dentry != dentry);
                sd->s_dentry = NULL;
                configfs_put(sd);
        }
        iput(inode);
}

/*
 * We _must_ delete our dentries on last dput, as the chain-to-parent
 * behavior is required to clear the parents of default_groups.
 */
static int configfs_d_delete(struct dentry *dentry)
{
        return 1;
}

static struct dentry_operations configfs_dentry_ops = {
        .d_iput         = configfs_d_iput,
        /* simple_delete_dentry() isn't exported */
        .d_delete       = configfs_d_delete,
};

/*
 * Allocates a new configfs_dirent and links it to the parent configfs_dirent
 */
static struct configfs_dirent *configfs_new_dirent(struct configfs_dirent * parent_sd,
                                                void * element)
{
        struct configfs_dirent * sd;

        sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL);
        if (!sd)
                return ERR_PTR(-ENOMEM);

        atomic_set(&sd->s_count, 1);
        INIT_LIST_HEAD(&sd->s_links);
        INIT_LIST_HEAD(&sd->s_children);
        sd->s_element = element;
        spin_lock(&configfs_dirent_lock);
        if (parent_sd->s_type & CONFIGFS_USET_DROPPING) {
                spin_unlock(&configfs_dirent_lock);
                kmem_cache_free(configfs_dir_cachep, sd);
                return ERR_PTR(-ENOENT);
        }
        list_add(&sd->s_sibling, &parent_sd->s_children);
        spin_unlock(&configfs_dirent_lock);

        return sd;
}

/*
 *
 * Return -EEXIST if there is already a configfs element with the same
 * name for the same parent.
 *
 * called with parent inode's i_mutex held
 */
static int configfs_dirent_exists(struct configfs_dirent *parent_sd,
                                  const unsigned char *new)
{
        struct configfs_dirent * sd;

        list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
                if (sd->s_element) {
                        const unsigned char *existing = configfs_get_name(sd);
                        if (strcmp(existing, new))
                                continue;
                        else
                                return -EEXIST;
                }
        }

        return 0;
}


int configfs_make_dirent(struct configfs_dirent * parent_sd,
                         struct dentry * dentry, void * element,
                         umode_t mode, int type)
{
        struct configfs_dirent * sd;

        sd = configfs_new_dirent(parent_sd, element);
        if (IS_ERR(sd))
                return PTR_ERR(sd);

        sd->s_mode = mode;
        sd->s_type = type;
        sd->s_dentry = dentry;
        if (dentry) {
                dentry->d_fsdata = configfs_get(sd);
                dentry->d_op = &configfs_dentry_ops;
        }

        return 0;
}

static int init_dir(struct inode * inode)
{
        inode->i_op = &configfs_dir_inode_operations;
        inode->i_fop = &configfs_dir_operations;

        /* directory inodes start off with i_nlink == 2 (for "." entry) */
        inc_nlink(inode);
        return 0;
}

static int configfs_init_file(struct inode * inode)
{
        inode->i_size = PAGE_SIZE;
        inode->i_fop = &configfs_file_operations;
        return 0;
}

static int init_symlink(struct inode * inode)
{
        inode->i_op = &configfs_symlink_inode_operations;
        return 0;
}

static int create_dir(struct config_item * k, struct dentry * p,
                      struct dentry * d)
{
        int error;
        umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO;

        error = configfs_dirent_exists(p->d_fsdata, d->d_name.name);
        if (!error)
                error = configfs_make_dirent(p->d_fsdata, d, k, mode,
                                             CONFIGFS_DIR | CONFIGFS_USET_CREATING);
        if (!error) {
                error = configfs_create(d, mode, init_dir);
                if (!error) {
                        inc_nlink(p->d_inode);
                        (d)->d_op = &configfs_dentry_ops;
                } else {
                        struct configfs_dirent *sd = d->d_fsdata;
                        if (sd) {
                                spin_lock(&configfs_dirent_lock);
                                list_del_init(&sd->s_sibling);
                                spin_unlock(&configfs_dirent_lock);
                                configfs_put(sd);
                        }
                }
        }
        return error;
}


/**
 *      configfs_create_dir - create a directory for an config_item.
 *      @item:          config_itemwe're creating directory for.
 *      @dentry:        config_item's dentry.
 *
 *      Note: user-created entries won't be allowed under this new directory
 *      until it is validated by configfs_dir_set_ready()
 */

static int configfs_create_dir(struct config_item * item, struct dentry *dentry)
{
        struct dentry * parent;
        int error = 0;

        BUG_ON(!item);

        if (item->ci_parent)
                parent = item->ci_parent->ci_dentry;
        else if (configfs_mount && configfs_mount->mnt_sb)
                parent = configfs_mount->mnt_sb->s_root;
        else
                return -EFAULT;

        error = create_dir(item,parent,dentry);
        if (!error)
                item->ci_dentry = dentry;
        return error;
}

/*
 * Allow userspace to create new entries under a new directory created with
 * configfs_create_dir(), and under all of its chidlren directories recursively.
 * @sd          configfs_dirent of the new directory to validate
 *
 * Caller must hold configfs_dirent_lock.
 */
static void configfs_dir_set_ready(struct configfs_dirent *sd)
{
        struct configfs_dirent *child_sd;

        sd->s_type &= ~CONFIGFS_USET_CREATING;
        list_for_each_entry(child_sd, &sd->s_children, s_sibling)
                if (child_sd->s_type & CONFIGFS_USET_CREATING)
                        configfs_dir_set_ready(child_sd);
}

/*
 * Check that a directory does not belong to a directory hierarchy being
 * attached and not validated yet.
 * @sd          configfs_dirent of the directory to check
 *
 * @return      non-zero iff the directory was validated
 *
 * Note: takes configfs_dirent_lock, so the result may change from false to true
 * in two consecutive calls, but never from true to false.
 */
int configfs_dirent_is_ready(struct configfs_dirent *sd)
{
        int ret;

        spin_lock(&configfs_dirent_lock);
        ret = !(sd->s_type & CONFIGFS_USET_CREATING);
        spin_unlock(&configfs_dirent_lock);

        return ret;
}

int configfs_create_link(struct configfs_symlink *sl,
                         struct dentry *parent,
                         struct dentry *dentry)
{
        int err = 0;
        umode_t mode = S_IFLNK | S_IRWXUGO;

        err = configfs_make_dirent(parent->d_fsdata, dentry, sl, mode,
                                   CONFIGFS_ITEM_LINK);
        if (!err) {
                err = configfs_create(dentry, mode, init_symlink);
                if (!err)
                        dentry->d_op = &configfs_dentry_ops;
                else {
                        struct configfs_dirent *sd = dentry->d_fsdata;
                        if (sd) {
                                spin_lock(&configfs_dirent_lock);
                                list_del_init(&sd->s_sibling);
                                spin_unlock(&configfs_dirent_lock);
                                configfs_put(sd);
                        }
                }
        }
        return err;
}

static void remove_dir(struct dentry * d)
{
        struct dentry * parent = dget(d->d_parent);
        struct configfs_dirent * sd;

        sd = d->d_fsdata;
        spin_lock(&configfs_dirent_lock);
        list_del_init(&sd->s_sibling);
        spin_unlock(&configfs_dirent_lock);
        configfs_put(sd);
        if (d->d_inode)
                simple_rmdir(parent->d_inode,d);

        pr_debug(" o %s removing done (%d)\n",d->d_name.name,
                 atomic_read(&d->d_count));

        dput(parent);
}

/**
 * configfs_remove_dir - remove an config_item's directory.
 * @item:       config_item we're removing.
 *
 * The only thing special about this is that we remove any files in
 * the directory before we remove the directory, and we've inlined
 * what used to be configfs_rmdir() below, instead of calling separately.
 *
 * Caller holds the mutex of the item's inode
 */

static void configfs_remove_dir(struct config_item * item)
{
        struct dentry * dentry = dget(item->ci_dentry);

        if (!dentry)
                return;

        remove_dir(dentry);
        /**
         * Drop reference from dget() on entrance.
         */
        dput(dentry);
}


/* attaches attribute's configfs_dirent to the dentry corresponding to the
 * attribute file
 */
static int configfs_attach_attr(struct configfs_dirent * sd, struct dentry * dentry)
{
        struct configfs_attribute * attr = sd->s_element;
        int error;

        dentry->d_fsdata = configfs_get(sd);
        sd->s_dentry = dentry;
        error = configfs_create(dentry, (attr->ca_mode & S_IALLUGO) | S_IFREG,
                                configfs_init_file);
        if (error) {
                configfs_put(sd);
                return error;
        }

        dentry->d_op = &configfs_dentry_ops;
        d_rehash(dentry);

        return 0;
}

static struct dentry * configfs_lookup(struct inode *dir,
                                       struct dentry *dentry,
                                       struct nameidata *nd)
{
        struct configfs_dirent * parent_sd = dentry->d_parent->d_fsdata;
        struct configfs_dirent * sd;
        int found = 0;
        int err;

        /*
         * Fake invisibility if dir belongs to a group/default groups hierarchy
         * being attached
         *
         * This forbids userspace to read/write attributes of items which may
         * not complete their initialization, since the dentries of the
         * attributes won't be instantiated.
         */
        err = -ENOENT;
        if (!configfs_dirent_is_ready(parent_sd))
                goto out;

        list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
                if (sd->s_type & CONFIGFS_NOT_PINNED) {
                        const unsigned char * name = configfs_get_name(sd);

                        if (strcmp(name, dentry->d_name.name))
                                continue;

                        found = 1;
                        err = configfs_attach_attr(sd, dentry);
                        break;
                }
        }

        if (!found) {
                /*
                 * If it doesn't exist and it isn't a NOT_PINNED item,
                 * it must be negative.
                 */
                return simple_lookup(dir, dentry, nd);
        }

out:
        return ERR_PTR(err);
}

/*
 * Only subdirectories count here.  Files (CONFIGFS_NOT_PINNED) are
 * attributes and are removed by rmdir().  We recurse, setting
 * CONFIGFS_USET_DROPPING on all children that are candidates for
 * default detach.
 * If there is an error, the caller will reset the flags via
 * configfs_detach_rollback().
 */
static int configfs_detach_prep(struct dentry *dentry, struct mutex **wait_mutex)
{
        struct configfs_dirent *parent_sd = dentry->d_fsdata;
        struct configfs_dirent *sd;
        int ret;

        /* Mark that we're trying to drop the group */
        parent_sd->s_type |= CONFIGFS_USET_DROPPING;

        ret = -EBUSY;
        if (!list_empty(&parent_sd->s_links))
                goto out;

        ret = 0;
        list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
                if (!sd->s_element ||
                    (sd->s_type & CONFIGFS_NOT_PINNED))
                        continue;
                if (sd->s_type & CONFIGFS_USET_DEFAULT) {
                        /* Abort if racing with mkdir() */
                        if (sd->s_type & CONFIGFS_USET_IN_MKDIR) {
                                if (wait_mutex)
                                        *wait_mutex = &sd->s_dentry->d_inode->i_mutex;
                                return -EAGAIN;
                        }

                        /*
                         * Yup, recursive.  If there's a problem, blame
                         * deep nesting of default_groups
                         */
                        ret = configfs_detach_prep(sd->s_dentry, wait_mutex);
                        if (!ret)
                                continue;
                } else
                        ret = -ENOTEMPTY;

                break;
        }

out:
        return ret;
}

/*
 * Walk the tree, resetting CONFIGFS_USET_DROPPING wherever it was
 * set.
 */
static void configfs_detach_rollback(struct dentry *dentry)
{
        struct configfs_dirent *parent_sd = dentry->d_fsdata;
        struct configfs_dirent *sd;

        parent_sd->s_type &= ~CONFIGFS_USET_DROPPING;

        list_for_each_entry(sd, &parent_sd->s_children, s_sibling)
                if (sd->s_type & CONFIGFS_USET_DEFAULT)
                        configfs_detach_rollback(sd->s_dentry);
}

static void detach_attrs(struct config_item * item)
{
        struct dentry * dentry = dget(item->ci_dentry);
        struct configfs_dirent * parent_sd;
        struct configfs_dirent * sd, * tmp;

        if (!dentry)
                return;

        pr_debug("configfs %s: dropping attrs for  dir\n",
                 dentry->d_name.name);

        parent_sd = dentry->d_fsdata;
        list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
                if (!sd->s_element || !(sd->s_type & CONFIGFS_NOT_PINNED))
                        continue;
                spin_lock(&configfs_dirent_lock);
                list_del_init(&sd->s_sibling);
                spin_unlock(&configfs_dirent_lock);
                configfs_drop_dentry(sd, dentry);
                configfs_put(sd);
        }

        /**
         * Drop reference from dget() on entrance.
         */
        dput(dentry);
}

static int populate_attrs(struct config_item *item)
{
        struct config_item_type *t = item->ci_type;
        struct configfs_attribute *attr;
        int error = 0;
        int i;

        if (!t)
                return -EINVAL;
        if (t->ct_attrs) {
                for (i = 0; (attr = t->ct_attrs[i]) != NULL; i++) {
                        if ((error = configfs_create_file(item, attr)))
                                break;
                }
        }

        if (error)
                detach_attrs(item);

        return error;
}

static int configfs_attach_group(struct config_item *parent_item,
                                 struct config_item *item,
                                 struct dentry *dentry);
static void configfs_detach_group(struct config_item *item);

static void detach_groups(struct config_group *group)
{
        struct dentry * dentry = dget(group->cg_item.ci_dentry);
        struct dentry *child;
        struct configfs_dirent *parent_sd;
        struct configfs_dirent *sd, *tmp;

        if (!dentry)
                return;

        parent_sd = dentry->d_fsdata;
        list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
                if (!sd->s_element ||
                    !(sd->s_type & CONFIGFS_USET_DEFAULT))
                        continue;

                child = sd->s_dentry;

                mutex_lock(&child->d_inode->i_mutex);

                configfs_detach_group(sd->s_element);
                child->d_inode->i_flags |= S_DEAD;

                mutex_unlock(&child->d_inode->i_mutex);

                d_delete(child);
                dput(child);
        }

        /**
         * Drop reference from dget() on entrance.
         */
        dput(dentry);
}

/*
 * This fakes mkdir(2) on a default_groups[] entry.  It
 * creates a dentry, attachs it, and then does fixup
 * on the sd->s_type.
 *
 * We could, perhaps, tweak our parent's ->mkdir for a minute and
 * try using vfs_mkdir.  Just a thought.
 */
static int create_default_group(struct config_group *parent_group,
                                struct config_group *group)
{
        int ret;
        struct qstr name;
        struct configfs_dirent *sd;
        /* We trust the caller holds a reference to parent */
        struct dentry *child, *parent = parent_group->cg_item.ci_dentry;

        if (!group->cg_item.ci_name)
                group->cg_item.ci_name = group->cg_item.ci_namebuf;
        name.name = group->cg_item.ci_name;
        name.len = strlen(name.name);
        name.hash = full_name_hash(name.name, name.len);

        ret = -ENOMEM;
        child = d_alloc(parent, &name);
        if (child) {
                d_add(child, NULL);

                ret = configfs_attach_group(&parent_group->cg_item,
                                            &group->cg_item, child);
                if (!ret) {
                        sd = child->d_fsdata;
                        sd->s_type |= CONFIGFS_USET_DEFAULT;
                } else {
                        d_delete(child);
                        dput(child);
                }
        }

        return ret;
}

static int populate_groups(struct config_group *group)
{
        struct config_group *new_group;
        int ret = 0;
        int i;

        if (group->default_groups) {
                for (i = 0; group->default_groups[i]; i++) {
                        new_group = group->default_groups[i];

                        ret = create_default_group(group, new_group);
                        if (ret) {
                                detach_groups(group);
                                break;
                        }
                }
        }

        return ret;
}

/*
 * All of link_obj/unlink_obj/link_group/unlink_group require that
 * subsys->su_mutex is held.
 */

static void unlink_obj(struct config_item *item)
{
        struct config_group *group;

        group = item->ci_group;
        if (group) {
                list_del_init(&item->ci_entry);

                item->ci_group = NULL;
                item->ci_parent = NULL;

                /* Drop the reference for ci_entry */
                config_item_put(item);

                /* Drop the reference for ci_parent */
                config_group_put(group);
        }
}

static void link_obj(struct config_item *parent_item, struct config_item *item)
{
        /*
         * Parent seems redundant with group, but it makes certain
         * traversals much nicer.
         */
        item->ci_parent = parent_item;

        /*
         * We hold a reference on the parent for the child's ci_parent
         * link.
         */
        item->ci_group = config_group_get(to_config_group(parent_item));
        list_add_tail(&item->ci_entry, &item->ci_group->cg_children);

        /*
         * We hold a reference on the child for ci_entry on the parent's
         * cg_children
         */
        config_item_get(item);
}

static void unlink_group(struct config_group *group)
{
        int i;
        struct config_group *new_group;

        if (group->default_groups) {
                for (i = 0; group->default_groups[i]; i++) {
                        new_group = group->default_groups[i];
                        unlink_group(new_group);
                }
        }

        group->cg_subsys = NULL;
        unlink_obj(&group->cg_item);
}

static void link_group(struct config_group *parent_group, struct config_group *group)
{
        int i;
        struct config_group *new_group;
        struct configfs_subsystem *subsys = NULL; /* gcc is a turd */

        link_obj(&parent_group->cg_item, &group->cg_item);

        if (parent_group->cg_subsys)
                subsys = parent_group->cg_subsys;
        else if (configfs_is_root(&parent_group->cg_item))
                subsys = to_configfs_subsystem(group);
        else
                BUG();
        group->cg_subsys = subsys;

        if (group->default_groups) {
                for (i = 0; group->default_groups[i]; i++) {
                        new_group = group->default_groups[i];
                        link_group(group, new_group);
                }
        }
}

/*
 * The goal is that configfs_attach_item() (and
 * configfs_attach_group()) can be called from either the VFS or this
 * module.  That is, they assume that the items have been created,
 * the dentry allocated, and the dcache is all ready to go.
 *
 * If they fail, they must clean up after themselves as if they
 * had never been called.  The caller (VFS or local function) will
 * handle cleaning up the dcache bits.
 *
 * configfs_detach_group() and configfs_detach_item() behave similarly on
 * the way out.  They assume that the proper semaphores are held, they
 * clean up the configfs items, and they expect their callers will
 * handle the dcache bits.
 */
static int configfs_attach_item(struct config_item *parent_item,
                                struct config_item *item,
                                struct dentry *dentry)
{
        int ret;

        ret = configfs_create_dir(item, dentry);
        if (!ret) {
                ret = populate_attrs(item);
                if (ret) {
                        /*
                         * We are going to remove an inode and its dentry but
                         * the VFS may already have hit and used them. Thus,
                         * we must lock them as rmdir() would.
                         */
                        mutex_lock(&dentry->d_inode->i_mutex);
                        configfs_remove_dir(item);
                        dentry->d_inode->i_flags |= S_DEAD;
                        mutex_unlock(&dentry->d_inode->i_mutex);
                        d_delete(dentry);
                }
        }

        return ret;
}

/* Caller holds the mutex of the item's inode */
static void configfs_detach_item(struct config_item *item)
{
        detach_attrs(item);
        configfs_remove_dir(item);
}

static int configfs_attach_group(struct config_item *parent_item,
                                 struct config_item *item,
                                 struct dentry *dentry)
{
        int ret;
        struct configfs_dirent *sd;

        ret = configfs_attach_item(parent_item, item, dentry);
        if (!ret) {
                sd = dentry->d_fsdata;
                sd->s_type |= CONFIGFS_USET_DIR;

                /*
                 * FYI, we're faking mkdir in populate_groups()
                 * We must lock the group's inode to avoid races with the VFS
                 * which can already hit the inode and try to add/remove entries
                 * under it.
                 *
                 * We must also lock the inode to remove it safely in case of
                 * error, as rmdir() would.
                 */
                mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
                ret = populate_groups(to_config_group(item));
                if (ret) {
                        configfs_detach_item(item);
                        dentry->d_inode->i_flags |= S_DEAD;
                }
                mutex_unlock(&dentry->d_inode->i_mutex);
                if (ret)
                        d_delete(dentry);
        }

        return ret;
}

/* Caller holds the mutex of the group's inode */
static void configfs_detach_group(struct config_item *item)
{
        detach_groups(to_config_group(item));
        configfs_detach_item(item);
}

/*
 * After the item has been detached from the filesystem view, we are
 * ready to tear it out of the hierarchy.  Notify the client before
 * we do that so they can perform any cleanup that requires
 * navigating the hierarchy.  A client does not need to provide this
 * callback.  The subsystem semaphore MUST be held by the caller, and
 * references must be valid for both items.  It also assumes the
 * caller has validated ci_type.
 */
static void client_disconnect_notify(struct config_item *parent_item,
                                     struct config_item *item)
{
        struct config_item_type *type;

        type = parent_item->ci_type;
        BUG_ON(!type);

        if (type->ct_group_ops && type->ct_group_ops->disconnect_notify)
                type->ct_group_ops->disconnect_notify(to_config_group(parent_item),
                                                      item);
}

/*
 * Drop the initial reference from make_item()/make_group()
 * This function assumes that reference is held on item
 * and that item holds a valid reference to the parent.  Also, it
 * assumes the caller has validated ci_type.
 */
static void client_drop_item(struct config_item *parent_item,
                             struct config_item *item)
{
        struct config_item_type *type;

        type = parent_item->ci_type;
        BUG_ON(!type);

        /*
         * If ->drop_item() exists, it is responsible for the
         * config_item_put().
         */
        if (type->ct_group_ops && type->ct_group_ops->drop_item)
                type->ct_group_ops->drop_item(to_config_group(parent_item),
                                              item);
        else
                config_item_put(item);
}

#ifdef DEBUG
static void configfs_dump_one(struct configfs_dirent *sd, int level)
{
        printk(KERN_INFO "%*s\"%s\":\n", level, " ", configfs_get_name(sd));

#define type_print(_type) if (sd->s_type & _type) printk(KERN_INFO "%*s %s\n", level, " ", #_type);
        type_print(CONFIGFS_ROOT);
        type_print(CONFIGFS_DIR);
        type_print(CONFIGFS_ITEM_ATTR);
        type_print(CONFIGFS_ITEM_LINK);
        type_print(CONFIGFS_USET_DIR);
        type_print(CONFIGFS_USET_DEFAULT);
        type_print(CONFIGFS_USET_DROPPING);
#undef type_print
}

static int configfs_dump(struct configfs_dirent *sd, int level)
{
        struct configfs_dirent *child_sd;
        int ret = 0;

        configfs_dump_one(sd, level);

        if (!(sd->s_type & (CONFIGFS_DIR|CONFIGFS_ROOT)))
                return 0;

        list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
                ret = configfs_dump(child_sd, level + 2);
                if (ret)
                        break;
        }

        return ret;
}
#endif


/*
 * configfs_depend_item() and configfs_undepend_item()
 *
 * WARNING: Do not call these from a configfs callback!
 *
 * This describes these functions and their helpers.
 *
 * Allow another kernel system to depend on a config_item.  If this
 * happens, the item cannot go away until the dependant can live without
 * it.  The idea is to give client modules as simple an interface as
 * possible.  When a system asks them to depend on an item, they just
 * call configfs_depend_item().  If the item is live and the client
 * driver is in good shape, we'll happily do the work for them.
 *
 * Why is the locking complex?  Because configfs uses the VFS to handle
 * all locking, but this function is called outside the normal
 * VFS->configfs path.  So it must take VFS locks to prevent the
 * VFS->configfs stuff (configfs_mkdir(), configfs_rmdir(), etc).  This is
 * why you can't call these functions underneath configfs callbacks.
 *
 * Note, btw, that this can be called at *any* time, even when a configfs
 * subsystem isn't registered, or when configfs is loading or unloading.
 * Just like configfs_register_subsystem().  So we take the same
 * precautions.  We pin the filesystem.  We lock each i_mutex _in_order_
 * on our way down the tree.  If we can find the target item in the
 * configfs tree, it must be part of the subsystem tree as well, so we
 * do not need the subsystem semaphore.  Holding the i_mutex chain locks
 * out mkdir() and rmdir(), who might be racing us.
 */

/*
 * configfs_depend_prep()
 *
 * Only subdirectories count here.  Files (CONFIGFS_NOT_PINNED) are
 * attributes.  This is similar but not the same to configfs_detach_prep().
 * Note that configfs_detach_prep() expects the parent to be locked when it
 * is called, but we lock the parent *inside* configfs_depend_prep().  We
 * do that so we can unlock it if we find nothing.
 *
 * Here we do a depth-first search of the dentry hierarchy looking for
 * our object.  We take i_mutex on each step of the way down.  IT IS
 * ESSENTIAL THAT i_mutex LOCKING IS ORDERED.  If we come back up a branch,
 * we'll drop the i_mutex.
 *
 * If the target is not found, -ENOENT is bubbled up and we have released
 * all locks.  If the target was found, the locks will be cleared by
 * configfs_depend_rollback().
 *
 * This adds a requirement that all config_items be unique!
 *
 * This is recursive because the locking traversal is tricky.  There isn't
 * much on the stack, though, so folks that need this function - be careful
 * about your stack!  Patches will be accepted to make it iterative.
 */
static int configfs_depend_prep(struct dentry *origin,
                                struct config_item *target)
{
        struct configfs_dirent *child_sd, *sd = origin->d_fsdata;
        int ret = 0;

        BUG_ON(!origin || !sd);

        /* Lock this guy on the way down */
        mutex_lock(&sd->s_dentry->d_inode->i_mutex);
        if (sd->s_element == target)  /* Boo-yah */
                goto out;

        list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
                if (child_sd->s_type & CONFIGFS_DIR) {
                        ret = configfs_depend_prep(child_sd->s_dentry,
                                                   target);
                        if (!ret)
                                goto out;  /* Child path boo-yah */
                }
        }

        /* We looped all our children and didn't find target */
        mutex_unlock(&sd->s_dentry->d_inode->i_mutex);
        ret = -ENOENT;

out:
        return ret;
}

/*
 * This is ONLY called if configfs_depend_prep() did its job.  So we can
 * trust the entire path from item back up to origin.
 *
 * We walk backwards from item, unlocking each i_mutex.  We finish by
 * unlocking origin.
 */
static void configfs_depend_rollback(struct dentry *origin,
                                     struct config_item *item)
{
        struct dentry *dentry = item->ci_dentry;

        while (dentry != origin) {
                mutex_unlock(&dentry->d_inode->i_mutex);
                dentry = dentry->d_parent;
        }

        mutex_unlock(&origin->d_inode->i_mutex);
}

int configfs_depend_item(struct configfs_subsystem *subsys,
                         struct config_item *target)
{
        int ret;
        struct configfs_dirent *p, *root_sd, *subsys_sd = NULL;
        struct config_item *s_item = &subsys->su_group.cg_item;

        /*
         * Pin the configfs filesystem.  This means we can safely access
         * the root of the configfs filesystem.
         */
        ret = configfs_pin_fs();
        if (ret)
                return ret;

        /*
         * Next, lock the root directory.  We're going to check that the
         * subsystem is really registered, and so we need to lock out
         * configfs_[un]register_subsystem().
         */
        mutex_lock(&configfs_sb->s_root->d_inode->i_mutex);

        root_sd = configfs_sb->s_root->d_fsdata;

        list_for_each_entry(p, &root_sd->s_children, s_sibling) {
                if (p->s_type & CONFIGFS_DIR) {
                        if (p->s_element == s_item) {
                                subsys_sd = p;
                                break;
                        }
                }
        }

        if (!subsys_sd) {
                ret = -ENOENT;
                goto out_unlock_fs;
        }

        /* Ok, now we can trust subsys/s_item */

        /* Scan the tree, locking i_mutex recursively, return 0 if found */
        ret = configfs_depend_prep(subsys_sd->s_dentry, target);
        if (ret)
                goto out_unlock_fs;

        /* We hold all i_mutexes from the subsystem down to the target */
        p = target->ci_dentry->d_fsdata;
        p->s_dependent_count += 1;

        configfs_depend_rollback(subsys_sd->s_dentry, target);

out_unlock_fs:
        mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);

        /*
         * If we succeeded, the fs is pinned via other methods.  If not,
         * we're done with it anyway.  So release_fs() is always right.
         */
        configfs_release_fs();

        return ret;
}
EXPORT_SYMBOL(configfs_depend_item);

/*
 * Release the dependent linkage.  This is much simpler than
 * configfs_depend_item() because we know that that the client driver is
 * pinned, thus the subsystem is pinned, and therefore configfs is pinned.
 */
void configfs_undepend_item(struct configfs_subsystem *subsys,
                            struct config_item *target)
{
        struct configfs_dirent *sd;

        /*
         * Since we can trust everything is pinned, we just need i_mutex
         * on the item.
         */
        mutex_lock(&target->ci_dentry->d_inode->i_mutex);

        sd = target->ci_dentry->d_fsdata;
        BUG_ON(sd->s_dependent_count < 1);

        sd->s_dependent_count -= 1;

        /*
         * After this unlock, we cannot trust the item to stay alive!
         * DO NOT REFERENCE item after this unlock.
         */
        mutex_unlock(&target->ci_dentry->d_inode->i_mutex);
}
EXPORT_SYMBOL(configfs_undepend_item);

static int configfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
        int ret = 0;
        int module_got = 0;
        struct config_group *group = NULL;
        struct config_item *item = NULL;
        struct config_item *parent_item;
        struct configfs_subsystem *subsys;
        struct configfs_dirent *sd;
        struct config_item_type *type;
        struct module *subsys_owner = NULL, *new_item_owner = NULL;
        char *name;

        if (dentry->d_parent == configfs_sb->s_root) {
                ret = -EPERM;
                goto out;
        }

        sd = dentry->d_parent->d_fsdata;

        /*
         * Fake invisibility if dir belongs to a group/default groups hierarchy
         * being attached
         */
        if (!configfs_dirent_is_ready(sd)) {
                ret = -ENOENT;
                goto out;
        }

        if (!(sd->s_type & CONFIGFS_USET_DIR)) {
                ret = -EPERM;
                goto out;
        }

        /* Get a working ref for the duration of this function */
        parent_item = configfs_get_config_item(dentry->d_parent);
        type = parent_item->ci_type;
        subsys = to_config_group(parent_item)->cg_subsys;
        BUG_ON(!subsys);

        if (!type || !type->ct_group_ops ||
            (!type->ct_group_ops->make_group &&
             !type->ct_group_ops->make_item)) {
                ret = -EPERM;  /* Lack-of-mkdir returns -EPERM */
                goto out_put;
        }

        /*
         * The subsystem may belong to a different module than the item
         * being created.  We don't want to safely pin the new item but
         * fail to pin the subsystem it sits under.
         */
        if (!subsys->su_group.cg_item.ci_type) {
                ret = -EINVAL;
                goto out_put;
        }
        subsys_owner = subsys->su_group.cg_item.ci_type->ct_owner;
        if (!try_module_get(subsys_owner)) {
                ret = -EINVAL;
                goto out_put;
        }

        name = kmalloc(dentry->d_name.len + 1, GFP_KERNEL);
        if (!name) {
                ret = -ENOMEM;
                goto out_subsys_put;
        }

        snprintf(name, dentry->d_name.len + 1, "%s", dentry->d_name.name);

        mutex_lock(&subsys->su_mutex);
        if (type->ct_group_ops->make_group) {
                group = type->ct_group_ops->make_group(to_config_group(parent_item), name);
                if (!group)
                        group = ERR_PTR(-ENOMEM);
                if (!IS_ERR(group)) {
                        link_group(to_config_group(parent_item), group);
                        item = &group->cg_item;
                } else
                        ret = PTR_ERR(group);
        } else {
                item = type->ct_group_ops->make_item(to_config_group(parent_item), name);
                if (!item)
                        item = ERR_PTR(-ENOMEM);
                if (!IS_ERR(item))
                        link_obj(parent_item, item);
                else
                        ret = PTR_ERR(item);
        }
        mutex_unlock(&subsys->su_mutex);

        kfree(name);
        if (ret) {
                /*
                 * If ret != 0, then link_obj() was never called.
                 * There are no extra references to clean up.
                 */
                goto out_subsys_put;
        }

        /*
         * link_obj() has been called (via link_group() for groups).
         * From here on out, errors must clean that up.
         */

        type = item->ci_type;
        if (!type) {
                ret = -EINVAL;
                goto out_unlink;
        }

        new_item_owner = type->ct_owner;
        if (!try_module_get(new_item_owner)) {
                ret = -EINVAL;
                goto out_unlink;
        }

        /*
         * I hate doing it this way, but if there is
         * an error,  module_put() probably should
         * happen after any cleanup.
         */
        module_got = 1;

        /*
         * Make racing rmdir() fail if it did not tag parent with
         * CONFIGFS_USET_DROPPING
         * Note: if CONFIGFS_USET_DROPPING is already set, attach_group() will
         * fail and let rmdir() terminate correctly
         */
        spin_lock(&configfs_dirent_lock);
        /* This will make configfs_detach_prep() fail */
        sd->s_type |= CONFIGFS_USET_IN_MKDIR;
        spin_unlock(&configfs_dirent_lock);

        if (group)
                ret = configfs_attach_group(parent_item, item, dentry);
        else
                ret = configfs_attach_item(parent_item, item, dentry);

        spin_lock(&configfs_dirent_lock);
        sd->s_type &= ~CONFIGFS_USET_IN_MKDIR;
        if (!ret)
                configfs_dir_set_ready(dentry->d_fsdata);
        spin_unlock(&configfs_dirent_lock);

out_unlink:
        if (ret) {
                /* Tear down everything we built up */
                mutex_lock(&subsys->su_mutex);

                client_disconnect_notify(parent_item, item);
                if (group)
                        unlink_group(group);
                else
                        unlink_obj(item);
                client_drop_item(parent_item, item);

                mutex_unlock(&subsys->su_mutex);

                if (module_got)
                        module_put(new_item_owner);
        }

out_subsys_put:
        if (ret)
                module_put(subsys_owner);

out_put:
        /*
         * link_obj()/link_group() took a reference from child->parent,
         * so the parent is safely pinned.  We can drop our working
         * reference.
         */
        config_item_put(parent_item);

out:
        return ret;
}

static int configfs_rmdir(struct inode *dir, struct dentry *dentry)
{
        struct config_item *parent_item;
        struct config_item *item;
        struct configfs_subsystem *subsys;
        struct configfs_dirent *sd;
        struct module *subsys_owner = NULL, *dead_item_owner = NULL;
        int ret;

        if (dentry->d_parent == configfs_sb->s_root)
                return -EPERM;

        sd = dentry->d_fsdata;
        if (sd->s_type & CONFIGFS_USET_DEFAULT)
                return -EPERM;

        /*
         * Here's where we check for dependents.  We're protected by
         * i_mutex.
         */
        if (sd->s_dependent_count)
                return -EBUSY;

        /* Get a working ref until we have the child */
        parent_item = configfs_get_config_item(dentry->d_parent);
        subsys = to_config_group(parent_item)->cg_subsys;
        BUG_ON(!subsys);

        if (!parent_item->ci_type) {
                config_item_put(parent_item);
                return -EINVAL;
        }

        /* configfs_mkdir() shouldn't have allowed this */
        BUG_ON(!subsys->su_group.cg_item.ci_type);
        subsys_owner = subsys->su_group.cg_item.ci_type->ct_owner;

        /*
         * Ensure that no racing symlink() will make detach_prep() fail while
         * the new link is temporarily attached
         */
        do {
                struct mutex *wait_mutex;

                mutex_lock(&configfs_symlink_mutex);
                spin_lock(&configfs_dirent_lock);
                ret = configfs_detach_prep(dentry, &wait_mutex);
                if (ret)
                        configfs_detach_rollback(dentry);
                spin_unlock(&configfs_dirent_lock);
                mutex_unlock(&configfs_symlink_mutex);

                if (ret) {
                        if (ret != -EAGAIN) {
                                config_item_put(parent_item);
                                return ret;
                        }

                        /* Wait until the racing operation terminates */
                        mutex_lock(wait_mutex);
                        mutex_unlock(wait_mutex);
                }
        } while (ret == -EAGAIN);

        /* Get a working ref for the duration of this function */
        item = configfs_get_config_item(dentry);

        /* Drop reference from above, item already holds one. */
        config_item_put(parent_item);

        if (item->ci_type)
                dead_item_owner = item->ci_type->ct_owner;

        if (sd->s_type & CONFIGFS_USET_DIR) {
                configfs_detach_group(item);

                mutex_lock(&subsys->su_mutex);
                client_disconnect_notify(parent_item, item);
                unlink_group(to_config_group(item));
        } else {
                configfs_detach_item(item);

                mutex_lock(&subsys->su_mutex);
                client_disconnect_notify(parent_item, item);
                unlink_obj(item);
        }

        client_drop_item(parent_item, item);
        mutex_unlock(&subsys->su_mutex);

        /* Drop our reference from above */
        config_item_put(item);

        module_put(dead_item_owner);
        module_put(subsys_owner);

        return 0;
}

const struct inode_operations configfs_dir_inode_operations = {
        .mkdir          = configfs_mkdir,
        .rmdir          = configfs_rmdir,
        .symlink        = configfs_symlink,
        .unlink         = configfs_unlink,
        .lookup         = configfs_lookup,
        .setattr        = configfs_setattr,
};

#if 0
int configfs_rename_dir(struct config_item * item, const char *new_name)
{
        int error = 0;
        struct dentry * new_dentry, * parent;

        if (!strcmp(config_item_name(item), new_name))
                return -EINVAL;

        if (!item->parent)
                return -EINVAL;

        down_write(&configfs_rename_sem);
        parent = item->parent->dentry;

        mutex_lock(&parent->d_inode->i_mutex);

        new_dentry = lookup_one_len(new_name, parent, strlen(new_name));
        if (!IS_ERR(new_dentry)) {
                if (!new_dentry->d_inode) {
                        error = config_item_set_name(item, "%s", new_name);
                        if (!error) {
                                d_add(new_dentry, NULL);
                                d_move(item->dentry, new_dentry);
                        }
                        else
                                d_delete(new_dentry);
                } else
                        error = -EEXIST;
                dput(new_dentry);
        }
        mutex_unlock(&parent->d_inode->i_mutex);
        up_write(&configfs_rename_sem);

        return error;
}
#endif

static int configfs_dir_open(struct inode *inode, struct file *file)
{
        struct dentry * dentry = file->f_path.dentry;
        struct configfs_dirent * parent_sd = dentry->d_fsdata;
        int err;

        mutex_lock(&dentry->d_inode->i_mutex);
        /*
         * Fake invisibility if dir belongs to a group/default groups hierarchy
         * being attached
         */
        err = -ENOENT;
        if (configfs_dirent_is_ready(parent_sd)) {
                file->private_data = configfs_new_dirent(parent_sd, NULL);
                if (IS_ERR(file->private_data))
                        err = PTR_ERR(file->private_data);
                else
                        err = 0;
        }
        mutex_unlock(&dentry->d_inode->i_mutex);

        return err;
}

static int configfs_dir_close(struct inode *inode, struct file *file)
{
        struct dentry * dentry = file->f_path.dentry;
        struct configfs_dirent * cursor = file->private_data;

        mutex_lock(&dentry->d_inode->i_mutex);
        spin_lock(&configfs_dirent_lock);
        list_del_init(&cursor->s_sibling);
        spin_unlock(&configfs_dirent_lock);
        mutex_unlock(&dentry->d_inode->i_mutex);

        release_configfs_dirent(cursor);

        return 0;
}

/* Relationship between s_mode and the DT_xxx types */
static inline unsigned char dt_type(struct configfs_dirent *sd)
{
        return (sd->s_mode >> 12) & 15;
}

static int configfs_readdir(struct file * filp, void * dirent, filldir_t filldir)
{
        struct dentry *dentry = filp->f_path.dentry;
        struct configfs_dirent * parent_sd = dentry->d_fsdata;
        struct configfs_dirent *cursor = filp->private_data;
        struct list_head *p, *q = &cursor->s_sibling;
        ino_t ino;
        int i = filp->f_pos;

        switch (i) {
                case 0:
                        ino = dentry->d_inode->i_ino;
                        if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
                                break;
                        filp->f_pos++;
                        i++;
                        /* fallthrough */
                case 1:
                        ino = parent_ino(dentry);
                        if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
                                break;
                        filp->f_pos++;
                        i++;
                        /* fallthrough */
                default:
                        if (filp->f_pos == 2) {
                                spin_lock(&configfs_dirent_lock);
                                list_move(q, &parent_sd->s_children);
                                spin_unlock(&configfs_dirent_lock);
                        }
                        for (p=q->next; p!= &parent_sd->s_children; p=p->next) {
                                struct configfs_dirent *next;
                                const char * name;
                                int len;

                                next = list_entry(p, struct configfs_dirent,
                                                   s_sibling);
                                if (!next->s_element)
                                        continue;

                                name = configfs_get_name(next);
                                len = strlen(name);
                                if (next->s_dentry)
                                        ino = next->s_dentry->d_inode->i_ino;
                                else
                                        ino = iunique(configfs_sb, 2);

                                if (filldir(dirent, name, len, filp->f_pos, ino,
                                                 dt_type(next)) < 0)
                                        return 0;

                                spin_lock(&configfs_dirent_lock);
                                list_move(q, p);
                                spin_unlock(&configfs_dirent_lock);
                                p = q;
                                filp->f_pos++;
                        }
        }
        return 0;
}

static loff_t configfs_dir_lseek(struct file * file, loff_t offset, int origin)
{
        struct dentry * dentry = file->f_path.dentry;

        mutex_lock(&dentry->d_inode->i_mutex);
        switch (origin) {
                case 1:
                        offset += file->f_pos;
                case 0:
                        if (offset >= 0)
                                break;
                default:
                        mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
                        return -EINVAL;
        }
        if (offset != file->f_pos) {
                file->f_pos = offset;
                if (file->f_pos >= 2) {
                        struct configfs_dirent *sd = dentry->d_fsdata;
                        struct configfs_dirent *cursor = file->private_data;
                        struct list_head *p;
                        loff_t n = file->f_pos - 2;

                        spin_lock(&configfs_dirent_lock);
                        list_del(&cursor->s_sibling);
                        p = sd->s_children.next;
                        while (n && p != &sd->s_children) {
                                struct configfs_dirent *next;
                                next = list_entry(p, struct configfs_dirent,
                                                   s_sibling);
                                if (next->s_element)
                                        n--;
                                p = p->next;
                        }
                        list_add_tail(&cursor->s_sibling, p);
                        spin_unlock(&configfs_dirent_lock);
                }
        }
        mutex_unlock(&dentry->d_inode->i_mutex);
        return offset;
}

const struct file_operations configfs_dir_operations = {
        .open           = configfs_dir_open,
        .release        = configfs_dir_close,
        .llseek         = configfs_dir_lseek,
        .read           = generic_read_dir,
        .readdir        = configfs_readdir,
};

int configfs_register_subsystem(struct configfs_subsystem *subsys)
{
        int err;
        struct config_group *group = &subsys->su_group;
        struct qstr name;
        struct dentry *dentry;
        struct configfs_dirent *sd;

        err = configfs_pin_fs();
        if (err)
                return err;

        if (!group->cg_item.ci_name)
                group->cg_item.ci_name = group->cg_item.ci_namebuf;

        sd = configfs_sb->s_root->d_fsdata;
        link_group(to_config_group(sd->s_element), group);

        mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
                        I_MUTEX_PARENT);

        name.name = group->cg_item.ci_name;
        name.len = strlen(name.name);
        name.hash = full_name_hash(name.name, name.len);

        err = -ENOMEM;
        dentry = d_alloc(configfs_sb->s_root, &name);
        if (dentry) {
                d_add(dentry, NULL);

                err = configfs_attach_group(sd->s_element, &group->cg_item,
                                            dentry);
                if (err) {
                        d_delete(dentry);
                        dput(dentry);
                } else {
                        spin_lock(&configfs_dirent_lock);
                        configfs_dir_set_ready(dentry->d_fsdata);
                        spin_unlock(&configfs_dirent_lock);
                }
        }

        mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);

        if (err) {
                unlink_group(group);
                configfs_release_fs();
        }

        return err;
}

void configfs_unregister_subsystem(struct configfs_subsystem *subsys)
{
        struct config_group *group = &subsys->su_group;
        struct dentry *dentry = group->cg_item.ci_dentry;

        if (dentry->d_parent != configfs_sb->s_root) {
                printk(KERN_ERR "configfs: Tried to unregister non-subsystem!\n");
                return;
        }

        mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
                          I_MUTEX_PARENT);
        mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
        mutex_lock(&configfs_symlink_mutex);
        spin_lock(&configfs_dirent_lock);
        if (configfs_detach_prep(dentry, NULL)) {
                printk(KERN_ERR "configfs: Tried to unregister non-empty subsystem!\n");
        }
        spin_unlock(&configfs_dirent_lock);
        mutex_unlock(&configfs_symlink_mutex);
        configfs_detach_group(&group->cg_item);
        dentry->d_inode->i_flags |= S_DEAD;
        mutex_unlock(&dentry->d_inode->i_mutex);

        d_delete(dentry);

        mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);

        dput(dentry);

        unlink_group(group);
        configfs_release_fs();
}

EXPORT_SYMBOL(configfs_register_subsystem);
EXPORT_SYMBOL(configfs_unregister_subsystem);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading