[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/xfs/xfs_log_recover.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xlog_get_bp
  2. xlog_put_bp
  3. xlog_bread
  4. xlog_bwrite
  5. xlog_align
  6. xlog_header_check_dump
  7. xlog_header_check_recover
  8. xlog_header_check_mount
  9. xlog_recover_iodone
  10. xlog_find_cycle_start
  11. xlog_find_verify_cycle
  12. xlog_find_verify_log_record
  13. xlog_find_head
  14. xlog_find_tail
  15. xlog_find_zeroed
  16. xlog_add_record
  17. xlog_write_log_records
  18. xlog_clear_stale_blocks
  19. xlog_recover_find_tid
  20. xlog_recover_put_hashq
  21. xlog_recover_add_item
  22. xlog_recover_add_to_cont_trans
  23. xlog_recover_add_to_trans
  24. xlog_recover_new_tid
  25. xlog_recover_unlink_tid
  26. xlog_recover_insert_item_backq
  27. xlog_recover_insert_item_frontq
  28. xlog_recover_reorder_trans
  29. xlog_recover_do_buffer_pass1
  30. xlog_check_buffer_cancelled
  31. xlog_recover_do_buffer_pass2
  32. xlog_recover_do_inode_buffer
  33. xlog_recover_do_reg_buffer
  34. xfs_qm_dqcheck
  35. xlog_recover_do_dquot_buffer
  36. xlog_recover_do_buffer_trans
  37. xlog_recover_do_inode_trans
  38. xlog_recover_do_quotaoff_trans
  39. xlog_recover_do_dquot_trans
  40. xlog_recover_do_efi_trans
  41. xlog_recover_do_efd_trans
  42. xlog_recover_do_trans
  43. xlog_recover_free_trans
  44. xlog_recover_commit_trans
  45. xlog_recover_unmount_trans
  46. xlog_recover_process_data
  47. xlog_recover_process_efi
  48. xlog_recover_check_ail
  49. xlog_recover_process_efis
  50. xlog_recover_clear_agi_bucket
  51. xlog_recover_process_iunlinks
  52. xlog_pack_data_checksum
  53. xlog_pack_data
  54. xlog_unpack_data_checksum
  55. xlog_unpack_data
  56. xlog_valid_rec_header
  57. xlog_do_recovery_pass
  58. xlog_do_log_recovery
  59. xlog_do_recover
  60. xlog_recover
  61. xlog_recover_finish
  62. xlog_recover_check_summary

/*
 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_error.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_imap.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_log_priv.h"
#include "xfs_buf_item.h"
#include "xfs_log_recover.h"
#include "xfs_extfree_item.h"
#include "xfs_trans_priv.h"
#include "xfs_quota.h"
#include "xfs_rw.h"
#include "xfs_utils.h"

STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
STATIC void     xlog_recover_insert_item_backq(xlog_recover_item_t **q,
                                               xlog_recover_item_t *item);
#if defined(DEBUG)
STATIC void     xlog_recover_check_summary(xlog_t *);
STATIC void     xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
#else
#define xlog_recover_check_summary(log)
#define xlog_recover_check_ail(mp, lip, gen)
#endif


/*
 * Sector aligned buffer routines for buffer create/read/write/access
 */

#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)   \
        ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
        ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)   ((bno) & ~(log)->l_sectbb_mask)

xfs_buf_t *
xlog_get_bp(
        xlog_t          *log,
        int             num_bblks)
{
        ASSERT(num_bblks > 0);

        if (log->l_sectbb_log) {
                if (num_bblks > 1)
                        num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
                num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
        }
        return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
}

void
xlog_put_bp(
        xfs_buf_t       *bp)
{
        xfs_buf_free(bp);
}


/*
 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 */
int
xlog_bread(
        xlog_t          *log,
        xfs_daddr_t     blk_no,
        int             nbblks,
        xfs_buf_t       *bp)
{
        int             error;

        if (log->l_sectbb_log) {
                blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
                nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
        }

        ASSERT(nbblks > 0);
        ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
        ASSERT(bp);

        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
        XFS_BUF_READ(bp);
        XFS_BUF_BUSY(bp);
        XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
        XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);

        xfsbdstrat(log->l_mp, bp);
        error = xfs_iowait(bp);
        if (error)
                xfs_ioerror_alert("xlog_bread", log->l_mp,
                                  bp, XFS_BUF_ADDR(bp));
        return error;
}

/*
 * Write out the buffer at the given block for the given number of blocks.
 * The buffer is kept locked across the write and is returned locked.
 * This can only be used for synchronous log writes.
 */
STATIC int
xlog_bwrite(
        xlog_t          *log,
        xfs_daddr_t     blk_no,
        int             nbblks,
        xfs_buf_t       *bp)
{
        int             error;

        if (log->l_sectbb_log) {
                blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
                nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
        }

        ASSERT(nbblks > 0);
        ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));

        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
        XFS_BUF_ZEROFLAGS(bp);
        XFS_BUF_BUSY(bp);
        XFS_BUF_HOLD(bp);
        XFS_BUF_PSEMA(bp, PRIBIO);
        XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
        XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);

        if ((error = xfs_bwrite(log->l_mp, bp)))
                xfs_ioerror_alert("xlog_bwrite", log->l_mp,
                                  bp, XFS_BUF_ADDR(bp));
        return error;
}

STATIC xfs_caddr_t
xlog_align(
        xlog_t          *log,
        xfs_daddr_t     blk_no,
        int             nbblks,
        xfs_buf_t       *bp)
{
        xfs_caddr_t     ptr;

        if (!log->l_sectbb_log)
                return XFS_BUF_PTR(bp);

        ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
        ASSERT(XFS_BUF_SIZE(bp) >=
                BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
        return ptr;
}

#ifdef DEBUG
/*
 * dump debug superblock and log record information
 */
STATIC void
xlog_header_check_dump(
        xfs_mount_t             *mp,
        xlog_rec_header_t       *head)
{
        int                     b;

        cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __func__);
        for (b = 0; b < 16; b++)
                cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
        cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
        cmn_err(CE_DEBUG, "    log : uuid = ");
        for (b = 0; b < 16; b++)
                cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
        cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
}
#else
#define xlog_header_check_dump(mp, head)
#endif

/*
 * check log record header for recovery
 */
STATIC int
xlog_header_check_recover(
        xfs_mount_t             *mp,
        xlog_rec_header_t       *head)
{
        ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);

        /*
         * IRIX doesn't write the h_fmt field and leaves it zeroed
         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
         * a dirty log created in IRIX.
         */
        if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
                xlog_warn(
        "XFS: dirty log written in incompatible format - can't recover");
                xlog_header_check_dump(mp, head);
                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
                                 XFS_ERRLEVEL_HIGH, mp);
                return XFS_ERROR(EFSCORRUPTED);
        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
                xlog_warn(
        "XFS: dirty log entry has mismatched uuid - can't recover");
                xlog_header_check_dump(mp, head);
                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
                                 XFS_ERRLEVEL_HIGH, mp);
                return XFS_ERROR(EFSCORRUPTED);
        }
        return 0;
}

/*
 * read the head block of the log and check the header
 */
STATIC int
xlog_header_check_mount(
        xfs_mount_t             *mp,
        xlog_rec_header_t       *head)
{
        ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);

        if (uuid_is_nil(&head->h_fs_uuid)) {
                /*
                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
                 * h_fs_uuid is nil, we assume this log was last mounted
                 * by IRIX and continue.
                 */
                xlog_warn("XFS: nil uuid in log - IRIX style log");
        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
                xlog_warn("XFS: log has mismatched uuid - can't recover");
                xlog_header_check_dump(mp, head);
                XFS_ERROR_REPORT("xlog_header_check_mount",
                                 XFS_ERRLEVEL_HIGH, mp);
                return XFS_ERROR(EFSCORRUPTED);
        }
        return 0;
}

STATIC void
xlog_recover_iodone(
        struct xfs_buf  *bp)
{
        xfs_mount_t     *mp;

        ASSERT(XFS_BUF_FSPRIVATE(bp, void *));

        if (XFS_BUF_GETERROR(bp)) {
                /*
                 * We're not going to bother about retrying
                 * this during recovery. One strike!
                 */
                mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
                xfs_ioerror_alert("xlog_recover_iodone",
                                  mp, bp, XFS_BUF_ADDR(bp));
                xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
        }
        XFS_BUF_SET_FSPRIVATE(bp, NULL);
        XFS_BUF_CLR_IODONE_FUNC(bp);
        xfs_biodone(bp);
}

/*
 * This routine finds (to an approximation) the first block in the physical
 * log which contains the given cycle.  It uses a binary search algorithm.
 * Note that the algorithm can not be perfect because the disk will not
 * necessarily be perfect.
 */
STATIC int
xlog_find_cycle_start(
        xlog_t          *log,
        xfs_buf_t       *bp,
        xfs_daddr_t     first_blk,
        xfs_daddr_t     *last_blk,
        uint            cycle)
{
        xfs_caddr_t     offset;
        xfs_daddr_t     mid_blk;
        uint            mid_cycle;
        int             error;

        mid_blk = BLK_AVG(first_blk, *last_blk);
        while (mid_blk != first_blk && mid_blk != *last_blk) {
                if ((error = xlog_bread(log, mid_blk, 1, bp)))
                        return error;
                offset = xlog_align(log, mid_blk, 1, bp);
                mid_cycle = xlog_get_cycle(offset);
                if (mid_cycle == cycle) {
                        *last_blk = mid_blk;
                        /* last_half_cycle == mid_cycle */
                } else {
                        first_blk = mid_blk;
                        /* first_half_cycle == mid_cycle */
                }
                mid_blk = BLK_AVG(first_blk, *last_blk);
        }
        ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
               (mid_blk == *last_blk && mid_blk-1 == first_blk));

        return 0;
}

/*
 * Check that the range of blocks does not contain the cycle number
 * given.  The scan needs to occur from front to back and the ptr into the
 * region must be updated since a later routine will need to perform another
 * test.  If the region is completely good, we end up returning the same
 * last block number.
 *
 * Set blkno to -1 if we encounter no errors.  This is an invalid block number
 * since we don't ever expect logs to get this large.
 */
STATIC int
xlog_find_verify_cycle(
        xlog_t          *log,
        xfs_daddr_t     start_blk,
        int             nbblks,
        uint            stop_on_cycle_no,
        xfs_daddr_t     *new_blk)
{
        xfs_daddr_t     i, j;
        uint            cycle;
        xfs_buf_t       *bp;
        xfs_daddr_t     bufblks;
        xfs_caddr_t     buf = NULL;
        int             error = 0;

        bufblks = 1 << ffs(nbblks);

        while (!(bp = xlog_get_bp(log, bufblks))) {
                /* can't get enough memory to do everything in one big buffer */
                bufblks >>= 1;
                if (bufblks <= log->l_sectbb_log)
                        return ENOMEM;
        }

        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
                int     bcount;

                bcount = min(bufblks, (start_blk + nbblks - i));

                if ((error = xlog_bread(log, i, bcount, bp)))
                        goto out;

                buf = xlog_align(log, i, bcount, bp);
                for (j = 0; j < bcount; j++) {
                        cycle = xlog_get_cycle(buf);
                        if (cycle == stop_on_cycle_no) {
                                *new_blk = i+j;
                                goto out;
                        }

                        buf += BBSIZE;
                }
        }

        *new_blk = -1;

out:
        xlog_put_bp(bp);
        return error;
}

/*
 * Potentially backup over partial log record write.
 *
 * In the typical case, last_blk is the number of the block directly after
 * a good log record.  Therefore, we subtract one to get the block number
 * of the last block in the given buffer.  extra_bblks contains the number
 * of blocks we would have read on a previous read.  This happens when the
 * last log record is split over the end of the physical log.
 *
 * extra_bblks is the number of blocks potentially verified on a previous
 * call to this routine.
 */
STATIC int
xlog_find_verify_log_record(
        xlog_t                  *log,
        xfs_daddr_t             start_blk,
        xfs_daddr_t             *last_blk,
        int                     extra_bblks)
{
        xfs_daddr_t             i;
        xfs_buf_t               *bp;
        xfs_caddr_t             offset = NULL;
        xlog_rec_header_t       *head = NULL;
        int                     error = 0;
        int                     smallmem = 0;
        int                     num_blks = *last_blk - start_blk;
        int                     xhdrs;

        ASSERT(start_blk != 0 || *last_blk != start_blk);

        if (!(bp = xlog_get_bp(log, num_blks))) {
                if (!(bp = xlog_get_bp(log, 1)))
                        return ENOMEM;
                smallmem = 1;
        } else {
                if ((error = xlog_bread(log, start_blk, num_blks, bp)))
                        goto out;
                offset = xlog_align(log, start_blk, num_blks, bp);
                offset += ((num_blks - 1) << BBSHIFT);
        }

        for (i = (*last_blk) - 1; i >= 0; i--) {
                if (i < start_blk) {
                        /* valid log record not found */
                        xlog_warn(
                "XFS: Log inconsistent (didn't find previous header)");
                        ASSERT(0);
                        error = XFS_ERROR(EIO);
                        goto out;
                }

                if (smallmem) {
                        if ((error = xlog_bread(log, i, 1, bp)))
                                goto out;
                        offset = xlog_align(log, i, 1, bp);
                }

                head = (xlog_rec_header_t *)offset;

                if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
                        break;

                if (!smallmem)
                        offset -= BBSIZE;
        }

        /*
         * We hit the beginning of the physical log & still no header.  Return
         * to caller.  If caller can handle a return of -1, then this routine
         * will be called again for the end of the physical log.
         */
        if (i == -1) {
                error = -1;
                goto out;
        }

        /*
         * We have the final block of the good log (the first block
         * of the log record _before_ the head. So we check the uuid.
         */
        if ((error = xlog_header_check_mount(log->l_mp, head)))
                goto out;

        /*
         * We may have found a log record header before we expected one.
         * last_blk will be the 1st block # with a given cycle #.  We may end
         * up reading an entire log record.  In this case, we don't want to
         * reset last_blk.  Only when last_blk points in the middle of a log
         * record do we update last_blk.
         */
        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
                uint    h_size = be32_to_cpu(head->h_size);

                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
                if (h_size % XLOG_HEADER_CYCLE_SIZE)
                        xhdrs++;
        } else {
                xhdrs = 1;
        }

        if (*last_blk - i + extra_bblks !=
            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
                *last_blk = i;

out:
        xlog_put_bp(bp);
        return error;
}

/*
 * Head is defined to be the point of the log where the next log write
 * write could go.  This means that incomplete LR writes at the end are
 * eliminated when calculating the head.  We aren't guaranteed that previous
 * LR have complete transactions.  We only know that a cycle number of
 * current cycle number -1 won't be present in the log if we start writing
 * from our current block number.
 *
 * last_blk contains the block number of the first block with a given
 * cycle number.
 *
 * Return: zero if normal, non-zero if error.
 */
STATIC int
xlog_find_head(
        xlog_t          *log,
        xfs_daddr_t     *return_head_blk)
{
        xfs_buf_t       *bp;
        xfs_caddr_t     offset;
        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
        int             num_scan_bblks;
        uint            first_half_cycle, last_half_cycle;
        uint            stop_on_cycle;
        int             error, log_bbnum = log->l_logBBsize;

        /* Is the end of the log device zeroed? */
        if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
                *return_head_blk = first_blk;

                /* Is the whole lot zeroed? */
                if (!first_blk) {
                        /* Linux XFS shouldn't generate totally zeroed logs -
                         * mkfs etc write a dummy unmount record to a fresh
                         * log so we can store the uuid in there
                         */
                        xlog_warn("XFS: totally zeroed log");
                }

                return 0;
        } else if (error) {
                xlog_warn("XFS: empty log check failed");
                return error;
        }

        first_blk = 0;                  /* get cycle # of 1st block */
        bp = xlog_get_bp(log, 1);
        if (!bp)
                return ENOMEM;
        if ((error = xlog_bread(log, 0, 1, bp)))
                goto bp_err;
        offset = xlog_align(log, 0, 1, bp);
        first_half_cycle = xlog_get_cycle(offset);

        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
        if ((error = xlog_bread(log, last_blk, 1, bp)))
                goto bp_err;
        offset = xlog_align(log, last_blk, 1, bp);
        last_half_cycle = xlog_get_cycle(offset);
        ASSERT(last_half_cycle != 0);

        /*
         * If the 1st half cycle number is equal to the last half cycle number,
         * then the entire log is stamped with the same cycle number.  In this
         * case, head_blk can't be set to zero (which makes sense).  The below
         * math doesn't work out properly with head_blk equal to zero.  Instead,
         * we set it to log_bbnum which is an invalid block number, but this
         * value makes the math correct.  If head_blk doesn't changed through
         * all the tests below, *head_blk is set to zero at the very end rather
         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
         * in a circular file.
         */
        if (first_half_cycle == last_half_cycle) {
                /*
                 * In this case we believe that the entire log should have
                 * cycle number last_half_cycle.  We need to scan backwards
                 * from the end verifying that there are no holes still
                 * containing last_half_cycle - 1.  If we find such a hole,
                 * then the start of that hole will be the new head.  The
                 * simple case looks like
                 *        x | x ... | x - 1 | x
                 * Another case that fits this picture would be
                 *        x | x + 1 | x ... | x
                 * In this case the head really is somewhere at the end of the
                 * log, as one of the latest writes at the beginning was
                 * incomplete.
                 * One more case is
                 *        x | x + 1 | x ... | x - 1 | x
                 * This is really the combination of the above two cases, and
                 * the head has to end up at the start of the x-1 hole at the
                 * end of the log.
                 *
                 * In the 256k log case, we will read from the beginning to the
                 * end of the log and search for cycle numbers equal to x-1.
                 * We don't worry about the x+1 blocks that we encounter,
                 * because we know that they cannot be the head since the log
                 * started with x.
                 */
                head_blk = log_bbnum;
                stop_on_cycle = last_half_cycle - 1;
        } else {
                /*
                 * In this case we want to find the first block with cycle
                 * number matching last_half_cycle.  We expect the log to be
                 * some variation on
                 *        x + 1 ... | x ...
                 * The first block with cycle number x (last_half_cycle) will
                 * be where the new head belongs.  First we do a binary search
                 * for the first occurrence of last_half_cycle.  The binary
                 * search may not be totally accurate, so then we scan back
                 * from there looking for occurrences of last_half_cycle before
                 * us.  If that backwards scan wraps around the beginning of
                 * the log, then we look for occurrences of last_half_cycle - 1
                 * at the end of the log.  The cases we're looking for look
                 * like
                 *        x + 1 ... | x | x + 1 | x ...
                 *                               ^ binary search stopped here
                 * or
                 *        x + 1 ... | x ... | x - 1 | x
                 *        <---------> less than scan distance
                 */
                stop_on_cycle = last_half_cycle;
                if ((error = xlog_find_cycle_start(log, bp, first_blk,
                                                &head_blk, last_half_cycle)))
                        goto bp_err;
        }

        /*
         * Now validate the answer.  Scan back some number of maximum possible
         * blocks and make sure each one has the expected cycle number.  The
         * maximum is determined by the total possible amount of buffering
         * in the in-core log.  The following number can be made tighter if
         * we actually look at the block size of the filesystem.
         */
        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
        if (head_blk >= num_scan_bblks) {
                /*
                 * We are guaranteed that the entire check can be performed
                 * in one buffer.
                 */
                start_blk = head_blk - num_scan_bblks;
                if ((error = xlog_find_verify_cycle(log,
                                                start_blk, num_scan_bblks,
                                                stop_on_cycle, &new_blk)))
                        goto bp_err;
                if (new_blk != -1)
                        head_blk = new_blk;
        } else {                /* need to read 2 parts of log */
                /*
                 * We are going to scan backwards in the log in two parts.
                 * First we scan the physical end of the log.  In this part
                 * of the log, we are looking for blocks with cycle number
                 * last_half_cycle - 1.
                 * If we find one, then we know that the log starts there, as
                 * we've found a hole that didn't get written in going around
                 * the end of the physical log.  The simple case for this is
                 *        x + 1 ... | x ... | x - 1 | x
                 *        <---------> less than scan distance
                 * If all of the blocks at the end of the log have cycle number
                 * last_half_cycle, then we check the blocks at the start of
                 * the log looking for occurrences of last_half_cycle.  If we
                 * find one, then our current estimate for the location of the
                 * first occurrence of last_half_cycle is wrong and we move
                 * back to the hole we've found.  This case looks like
                 *        x + 1 ... | x | x + 1 | x ...
                 *                               ^ binary search stopped here
                 * Another case we need to handle that only occurs in 256k
                 * logs is
                 *        x + 1 ... | x ... | x+1 | x ...
                 *                   ^ binary search stops here
                 * In a 256k log, the scan at the end of the log will see the
                 * x + 1 blocks.  We need to skip past those since that is
                 * certainly not the head of the log.  By searching for
                 * last_half_cycle-1 we accomplish that.
                 */
                start_blk = log_bbnum - num_scan_bblks + head_blk;
                ASSERT(head_blk <= INT_MAX &&
                        (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
                if ((error = xlog_find_verify_cycle(log, start_blk,
                                        num_scan_bblks - (int)head_blk,
                                        (stop_on_cycle - 1), &new_blk)))
                        goto bp_err;
                if (new_blk != -1) {
                        head_blk = new_blk;
                        goto bad_blk;
                }

                /*
                 * Scan beginning of log now.  The last part of the physical
                 * log is good.  This scan needs to verify that it doesn't find
                 * the last_half_cycle.
                 */
                start_blk = 0;
                ASSERT(head_blk <= INT_MAX);
                if ((error = xlog_find_verify_cycle(log,
                                        start_blk, (int)head_blk,
                                        stop_on_cycle, &new_blk)))
                        goto bp_err;
                if (new_blk != -1)
                        head_blk = new_blk;
        }

 bad_blk:
        /*
         * Now we need to make sure head_blk is not pointing to a block in
         * the middle of a log record.
         */
        num_scan_bblks = XLOG_REC_SHIFT(log);
        if (head_blk >= num_scan_bblks) {
                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */

                /* start ptr at last block ptr before head_blk */
                if ((error = xlog_find_verify_log_record(log, start_blk,
                                                        &head_blk, 0)) == -1) {
                        error = XFS_ERROR(EIO);
                        goto bp_err;
                } else if (error)
                        goto bp_err;
        } else {
                start_blk = 0;
                ASSERT(head_blk <= INT_MAX);
                if ((error = xlog_find_verify_log_record(log, start_blk,
                                                        &head_blk, 0)) == -1) {
                        /* We hit the beginning of the log during our search */
                        start_blk = log_bbnum - num_scan_bblks + head_blk;
                        new_blk = log_bbnum;
                        ASSERT(start_blk <= INT_MAX &&
                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
                        ASSERT(head_blk <= INT_MAX);
                        if ((error = xlog_find_verify_log_record(log,
                                                        start_blk, &new_blk,
                                                        (int)head_blk)) == -1) {
                                error = XFS_ERROR(EIO);
                                goto bp_err;
                        } else if (error)
                                goto bp_err;
                        if (new_blk != log_bbnum)
                                head_blk = new_blk;
                } else if (error)
                        goto bp_err;
        }

        xlog_put_bp(bp);
        if (head_blk == log_bbnum)
                *return_head_blk = 0;
        else
                *return_head_blk = head_blk;
        /*
         * When returning here, we have a good block number.  Bad block
         * means that during a previous crash, we didn't have a clean break
         * from cycle number N to cycle number N-1.  In this case, we need
         * to find the first block with cycle number N-1.
         */
        return 0;

 bp_err:
        xlog_put_bp(bp);

        if (error)
            xlog_warn("XFS: failed to find log head");
        return error;
}

/*
 * Find the sync block number or the tail of the log.
 *
 * This will be the block number of the last record to have its
 * associated buffers synced to disk.  Every log record header has
 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 * to get a sync block number.  The only concern is to figure out which
 * log record header to believe.
 *
 * The following algorithm uses the log record header with the largest
 * lsn.  The entire log record does not need to be valid.  We only care
 * that the header is valid.
 *
 * We could speed up search by using current head_blk buffer, but it is not
 * available.
 */
int
xlog_find_tail(
        xlog_t                  *log,
        xfs_daddr_t             *head_blk,
        xfs_daddr_t             *tail_blk)
{
        xlog_rec_header_t       *rhead;
        xlog_op_header_t        *op_head;
        xfs_caddr_t             offset = NULL;
        xfs_buf_t               *bp;
        int                     error, i, found;
        xfs_daddr_t             umount_data_blk;
        xfs_daddr_t             after_umount_blk;
        xfs_lsn_t               tail_lsn;
        int                     hblks;

        found = 0;

        /*
         * Find previous log record
         */
        if ((error = xlog_find_head(log, head_blk)))
                return error;

        bp = xlog_get_bp(log, 1);
        if (!bp)
                return ENOMEM;
        if (*head_blk == 0) {                           /* special case */
                if ((error = xlog_bread(log, 0, 1, bp)))
                        goto bread_err;
                offset = xlog_align(log, 0, 1, bp);
                if (xlog_get_cycle(offset) == 0) {
                        *tail_blk = 0;
                        /* leave all other log inited values alone */
                        goto exit;
                }
        }

        /*
         * Search backwards looking for log record header block
         */
        ASSERT(*head_blk < INT_MAX);
        for (i = (int)(*head_blk) - 1; i >= 0; i--) {
                if ((error = xlog_bread(log, i, 1, bp)))
                        goto bread_err;
                offset = xlog_align(log, i, 1, bp);
                if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
                        found = 1;
                        break;
                }
        }
        /*
         * If we haven't found the log record header block, start looking
         * again from the end of the physical log.  XXXmiken: There should be
         * a check here to make sure we didn't search more than N blocks in
         * the previous code.
         */
        if (!found) {
                for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
                        if ((error = xlog_bread(log, i, 1, bp)))
                                goto bread_err;
                        offset = xlog_align(log, i, 1, bp);
                        if (XLOG_HEADER_MAGIC_NUM ==
                            be32_to_cpu(*(__be32 *)offset)) {
                                found = 2;
                                break;
                        }
                }
        }
        if (!found) {
                xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
                ASSERT(0);
                return XFS_ERROR(EIO);
        }

        /* find blk_no of tail of log */
        rhead = (xlog_rec_header_t *)offset;
        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));

        /*
         * Reset log values according to the state of the log when we
         * crashed.  In the case where head_blk == 0, we bump curr_cycle
         * one because the next write starts a new cycle rather than
         * continuing the cycle of the last good log record.  At this
         * point we have guaranteed that all partial log records have been
         * accounted for.  Therefore, we know that the last good log record
         * written was complete and ended exactly on the end boundary
         * of the physical log.
         */
        log->l_prev_block = i;
        log->l_curr_block = (int)*head_blk;
        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
        if (found == 2)
                log->l_curr_cycle++;
        log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
        log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
        log->l_grant_reserve_cycle = log->l_curr_cycle;
        log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
        log->l_grant_write_cycle = log->l_curr_cycle;
        log->l_grant_write_bytes = BBTOB(log->l_curr_block);

        /*
         * Look for unmount record.  If we find it, then we know there
         * was a clean unmount.  Since 'i' could be the last block in
         * the physical log, we convert to a log block before comparing
         * to the head_blk.
         *
         * Save the current tail lsn to use to pass to
         * xlog_clear_stale_blocks() below.  We won't want to clear the
         * unmount record if there is one, so we pass the lsn of the
         * unmount record rather than the block after it.
         */
        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
                int     h_size = be32_to_cpu(rhead->h_size);
                int     h_version = be32_to_cpu(rhead->h_version);

                if ((h_version & XLOG_VERSION_2) &&
                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
                                hblks++;
                } else {
                        hblks = 1;
                }
        } else {
                hblks = 1;
        }
        after_umount_blk = (i + hblks + (int)
                BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
        tail_lsn = log->l_tail_lsn;
        if (*head_blk == after_umount_blk &&
            be32_to_cpu(rhead->h_num_logops) == 1) {
                umount_data_blk = (i + hblks) % log->l_logBBsize;
                if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
                        goto bread_err;
                }
                offset = xlog_align(log, umount_data_blk, 1, bp);
                op_head = (xlog_op_header_t *)offset;
                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
                        /*
                         * Set tail and last sync so that newly written
                         * log records will point recovery to after the
                         * current unmount record.
                         */
                        log->l_tail_lsn =
                                xlog_assign_lsn(log->l_curr_cycle,
                                                after_umount_blk);
                        log->l_last_sync_lsn =
                                xlog_assign_lsn(log->l_curr_cycle,
                                                after_umount_blk);
                        *tail_blk = after_umount_blk;

                        /*
                         * Note that the unmount was clean. If the unmount
                         * was not clean, we need to know this to rebuild the
                         * superblock counters from the perag headers if we
                         * have a filesystem using non-persistent counters.
                         */
                        log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
                }
        }

        /*
         * Make sure that there are no blocks in front of the head
         * with the same cycle number as the head.  This can happen
         * because we allow multiple outstanding log writes concurrently,
         * and the later writes might make it out before earlier ones.
         *
         * We use the lsn from before modifying it so that we'll never
         * overwrite the unmount record after a clean unmount.
         *
         * Do this only if we are going to recover the filesystem
         *
         * NOTE: This used to say "if (!readonly)"
         * However on Linux, we can & do recover a read-only filesystem.
         * We only skip recovery if NORECOVERY is specified on mount,
         * in which case we would not be here.
         *
         * But... if the -device- itself is readonly, just skip this.
         * We can't recover this device anyway, so it won't matter.
         */
        if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
                error = xlog_clear_stale_blocks(log, tail_lsn);
        }

bread_err:
exit:
        xlog_put_bp(bp);

        if (error)
                xlog_warn("XFS: failed to locate log tail");
        return error;
}

/*
 * Is the log zeroed at all?
 *
 * The last binary search should be changed to perform an X block read
 * once X becomes small enough.  You can then search linearly through
 * the X blocks.  This will cut down on the number of reads we need to do.
 *
 * If the log is partially zeroed, this routine will pass back the blkno
 * of the first block with cycle number 0.  It won't have a complete LR
 * preceding it.
 *
 * Return:
 *      0  => the log is completely written to
 *      -1 => use *blk_no as the first block of the log
 *      >0 => error has occurred
 */
STATIC int
xlog_find_zeroed(
        xlog_t          *log,
        xfs_daddr_t     *blk_no)
{
        xfs_buf_t       *bp;
        xfs_caddr_t     offset;
        uint            first_cycle, last_cycle;
        xfs_daddr_t     new_blk, last_blk, start_blk;
        xfs_daddr_t     num_scan_bblks;
        int             error, log_bbnum = log->l_logBBsize;

        *blk_no = 0;

        /* check totally zeroed log */
        bp = xlog_get_bp(log, 1);
        if (!bp)
                return ENOMEM;
        if ((error = xlog_bread(log, 0, 1, bp)))
                goto bp_err;
        offset = xlog_align(log, 0, 1, bp);
        first_cycle = xlog_get_cycle(offset);
        if (first_cycle == 0) {         /* completely zeroed log */
                *blk_no = 0;
                xlog_put_bp(bp);
                return -1;
        }

        /* check partially zeroed log */
        if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
                goto bp_err;
        offset = xlog_align(log, log_bbnum-1, 1, bp);
        last_cycle = xlog_get_cycle(offset);
        if (last_cycle != 0) {          /* log completely written to */
                xlog_put_bp(bp);
                return 0;
        } else if (first_cycle != 1) {
                /*
                 * If the cycle of the last block is zero, the cycle of
                 * the first block must be 1. If it's not, maybe we're
                 * not looking at a log... Bail out.
                 */
                xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
                return XFS_ERROR(EINVAL);
        }

        /* we have a partially zeroed log */
        last_blk = log_bbnum-1;
        if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
                goto bp_err;

        /*
         * Validate the answer.  Because there is no way to guarantee that
         * the entire log is made up of log records which are the same size,
         * we scan over the defined maximum blocks.  At this point, the maximum
         * is not chosen to mean anything special.   XXXmiken
         */
        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
        ASSERT(num_scan_bblks <= INT_MAX);

        if (last_blk < num_scan_bblks)
                num_scan_bblks = last_blk;
        start_blk = last_blk - num_scan_bblks;

        /*
         * We search for any instances of cycle number 0 that occur before
         * our current estimate of the head.  What we're trying to detect is
         *        1 ... | 0 | 1 | 0...
         *                       ^ binary search ends here
         */
        if ((error = xlog_find_verify_cycle(log, start_blk,
                                         (int)num_scan_bblks, 0, &new_blk)))
                goto bp_err;
        if (new_blk != -1)
                last_blk = new_blk;

        /*
         * Potentially backup over partial log record write.  We don't need
         * to search the end of the log because we know it is zero.
         */
        if ((error = xlog_find_verify_log_record(log, start_blk,
                                &last_blk, 0)) == -1) {
            error = XFS_ERROR(EIO);
            goto bp_err;
        } else if (error)
            goto bp_err;

        *blk_no = last_blk;
bp_err:
        xlog_put_bp(bp);
        if (error)
                return error;
        return -1;
}

/*
 * These are simple subroutines used by xlog_clear_stale_blocks() below
 * to initialize a buffer full of empty log record headers and write
 * them into the log.
 */
STATIC void
xlog_add_record(
        xlog_t                  *log,
        xfs_caddr_t             buf,
        int                     cycle,
        int                     block,
        int                     tail_cycle,
        int                     tail_block)
{
        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;

        memset(buf, 0, BBSIZE);
        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
        recp->h_cycle = cpu_to_be32(cycle);
        recp->h_version = cpu_to_be32(
                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
        recp->h_fmt = cpu_to_be32(XLOG_FMT);
        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
}

STATIC int
xlog_write_log_records(
        xlog_t          *log,
        int             cycle,
        int             start_block,
        int             blocks,
        int             tail_cycle,
        int             tail_block)
{
        xfs_caddr_t     offset;
        xfs_buf_t       *bp;
        int             balign, ealign;
        int             sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
        int             end_block = start_block + blocks;
        int             bufblks;
        int             error = 0;
        int             i, j = 0;

        bufblks = 1 << ffs(blocks);
        while (!(bp = xlog_get_bp(log, bufblks))) {
                bufblks >>= 1;
                if (bufblks <= log->l_sectbb_log)
                        return ENOMEM;
        }

        /* We may need to do a read at the start to fill in part of
         * the buffer in the starting sector not covered by the first
         * write below.
         */
        balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
        if (balign != start_block) {
                if ((error = xlog_bread(log, start_block, 1, bp))) {
                        xlog_put_bp(bp);
                        return error;
                }
                j = start_block - balign;
        }

        for (i = start_block; i < end_block; i += bufblks) {
                int             bcount, endcount;

                bcount = min(bufblks, end_block - start_block);
                endcount = bcount - j;

                /* We may need to do a read at the end to fill in part of
                 * the buffer in the final sector not covered by the write.
                 * If this is the same sector as the above read, skip it.
                 */
                ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
                if (j == 0 && (start_block + endcount > ealign)) {
                        offset = XFS_BUF_PTR(bp);
                        balign = BBTOB(ealign - start_block);
                        error = XFS_BUF_SET_PTR(bp, offset + balign,
                                                BBTOB(sectbb));
                        if (!error)
                                error = xlog_bread(log, ealign, sectbb, bp);
                        if (!error)
                                error = XFS_BUF_SET_PTR(bp, offset, bufblks);
                        if (error)
                                break;
                }

                offset = xlog_align(log, start_block, endcount, bp);
                for (; j < endcount; j++) {
                        xlog_add_record(log, offset, cycle, i+j,
                                        tail_cycle, tail_block);
                        offset += BBSIZE;
                }
                error = xlog_bwrite(log, start_block, endcount, bp);
                if (error)
                        break;
                start_block += endcount;
                j = 0;
        }
        xlog_put_bp(bp);
        return error;
}

/*
 * This routine is called to blow away any incomplete log writes out
 * in front of the log head.  We do this so that we won't become confused
 * if we come up, write only a little bit more, and then crash again.
 * If we leave the partial log records out there, this situation could
 * cause us to think those partial writes are valid blocks since they
 * have the current cycle number.  We get rid of them by overwriting them
 * with empty log records with the old cycle number rather than the
 * current one.
 *
 * The tail lsn is passed in rather than taken from
 * the log so that we will not write over the unmount record after a
 * clean unmount in a 512 block log.  Doing so would leave the log without
 * any valid log records in it until a new one was written.  If we crashed
 * during that time we would not be able to recover.
 */
STATIC int
xlog_clear_stale_blocks(
        xlog_t          *log,
        xfs_lsn_t       tail_lsn)
{
        int             tail_cycle, head_cycle;
        int             tail_block, head_block;
        int             tail_distance, max_distance;
        int             distance;
        int             error;

        tail_cycle = CYCLE_LSN(tail_lsn);
        tail_block = BLOCK_LSN(tail_lsn);
        head_cycle = log->l_curr_cycle;
        head_block = log->l_curr_block;

        /*
         * Figure out the distance between the new head of the log
         * and the tail.  We want to write over any blocks beyond the
         * head that we may have written just before the crash, but
         * we don't want to overwrite the tail of the log.
         */
        if (head_cycle == tail_cycle) {
                /*
                 * The tail is behind the head in the physical log,
                 * so the distance from the head to the tail is the
                 * distance from the head to the end of the log plus
                 * the distance from the beginning of the log to the
                 * tail.
                 */
                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
                                         XFS_ERRLEVEL_LOW, log->l_mp);
                        return XFS_ERROR(EFSCORRUPTED);
                }
                tail_distance = tail_block + (log->l_logBBsize - head_block);
        } else {
                /*
                 * The head is behind the tail in the physical log,
                 * so the distance from the head to the tail is just
                 * the tail block minus the head block.
                 */
                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
                                         XFS_ERRLEVEL_LOW, log->l_mp);
                        return XFS_ERROR(EFSCORRUPTED);
                }
                tail_distance = tail_block - head_block;
        }

        /*
         * If the head is right up against the tail, we can't clear
         * anything.
         */
        if (tail_distance <= 0) {
                ASSERT(tail_distance == 0);
                return 0;
        }

        max_distance = XLOG_TOTAL_REC_SHIFT(log);
        /*
         * Take the smaller of the maximum amount of outstanding I/O
         * we could have and the distance to the tail to clear out.
         * We take the smaller so that we don't overwrite the tail and
         * we don't waste all day writing from the head to the tail
         * for no reason.
         */
        max_distance = MIN(max_distance, tail_distance);

        if ((head_block + max_distance) <= log->l_logBBsize) {
                /*
                 * We can stomp all the blocks we need to without
                 * wrapping around the end of the log.  Just do it
                 * in a single write.  Use the cycle number of the
                 * current cycle minus one so that the log will look like:
                 *     n ... | n - 1 ...
                 */
                error = xlog_write_log_records(log, (head_cycle - 1),
                                head_block, max_distance, tail_cycle,
                                tail_block);
                if (error)
                        return error;
        } else {
                /*
                 * We need to wrap around the end of the physical log in
                 * order to clear all the blocks.  Do it in two separate
                 * I/Os.  The first write should be from the head to the
                 * end of the physical log, and it should use the current
                 * cycle number minus one just like above.
                 */
                distance = log->l_logBBsize - head_block;
                error = xlog_write_log_records(log, (head_cycle - 1),
                                head_block, distance, tail_cycle,
                                tail_block);

                if (error)
                        return error;

                /*
                 * Now write the blocks at the start of the physical log.
                 * This writes the remainder of the blocks we want to clear.
                 * It uses the current cycle number since we're now on the
                 * same cycle as the head so that we get:
                 *    n ... n ... | n - 1 ...
                 *    ^^^^^ blocks we're writing
                 */
                distance = max_distance - (log->l_logBBsize - head_block);
                error = xlog_write_log_records(log, head_cycle, 0, distance,
                                tail_cycle, tail_block);
                if (error)
                        return error;
        }

        return 0;
}

/******************************************************************************
 *
 *              Log recover routines
 *
 ******************************************************************************
 */

STATIC xlog_recover_t *
xlog_recover_find_tid(
        xlog_recover_t          *q,
        xlog_tid_t              tid)
{
        xlog_recover_t          *p = q;

        while (p != NULL) {
                if (p->r_log_tid == tid)
                    break;
                p = p->r_next;
        }
        return p;
}

STATIC void
xlog_recover_put_hashq(
        xlog_recover_t          **q,
        xlog_recover_t          *trans)
{
        trans->r_next = *q;
        *q = trans;
}

STATIC void
xlog_recover_add_item(
        xlog_recover_item_t     **itemq)
{
        xlog_recover_item_t     *item;

        item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
        xlog_recover_insert_item_backq(itemq, item);
}

STATIC int
xlog_recover_add_to_cont_trans(
        xlog_recover_t          *trans,
        xfs_caddr_t             dp,
        int                     len)
{
        xlog_recover_item_t     *item;
        xfs_caddr_t             ptr, old_ptr;
        int                     old_len;

        item = trans->r_itemq;
        if (item == NULL) {
                /* finish copying rest of trans header */
                xlog_recover_add_item(&trans->r_itemq);
                ptr = (xfs_caddr_t) &trans->r_theader +
                                sizeof(xfs_trans_header_t) - len;
                memcpy(ptr, dp, len); /* d, s, l */
                return 0;
        }
        item = item->ri_prev;

        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
        old_len = item->ri_buf[item->ri_cnt-1].i_len;

        ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
        memcpy(&ptr[old_len], dp, len); /* d, s, l */
        item->ri_buf[item->ri_cnt-1].i_len += len;
        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
        return 0;
}

/*
 * The next region to add is the start of a new region.  It could be
 * a whole region or it could be the first part of a new region.  Because
 * of this, the assumption here is that the type and size fields of all
 * format structures fit into the first 32 bits of the structure.
 *
 * This works because all regions must be 32 bit aligned.  Therefore, we
 * either have both fields or we have neither field.  In the case we have
 * neither field, the data part of the region is zero length.  We only have
 * a log_op_header and can throw away the header since a new one will appear
 * later.  If we have at least 4 bytes, then we can determine how many regions
 * will appear in the current log item.
 */
STATIC int
xlog_recover_add_to_trans(
        xlog_recover_t          *trans,
        xfs_caddr_t             dp,
        int                     len)
{
        xfs_inode_log_format_t  *in_f;                  /* any will do */
        xlog_recover_item_t     *item;
        xfs_caddr_t             ptr;

        if (!len)
                return 0;
        item = trans->r_itemq;
        if (item == NULL) {
                ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
                if (len == sizeof(xfs_trans_header_t))
                        xlog_recover_add_item(&trans->r_itemq);
                memcpy(&trans->r_theader, dp, len); /* d, s, l */
                return 0;
        }

        ptr = kmem_alloc(len, KM_SLEEP);
        memcpy(ptr, dp, len);
        in_f = (xfs_inode_log_format_t *)ptr;

        if (item->ri_prev->ri_total != 0 &&
             item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
                xlog_recover_add_item(&trans->r_itemq);
        }
        item = trans->r_itemq;
        item = item->ri_prev;

        if (item->ri_total == 0) {              /* first region to be added */
                item->ri_total  = in_f->ilf_size;
                ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
                item->ri_buf = kmem_zalloc((item->ri_total *
                                            sizeof(xfs_log_iovec_t)), KM_SLEEP);
        }
        ASSERT(item->ri_total > item->ri_cnt);
        /* Description region is ri_buf[0] */
        item->ri_buf[item->ri_cnt].i_addr = ptr;
        item->ri_buf[item->ri_cnt].i_len  = len;
        item->ri_cnt++;
        return 0;
}

STATIC void
xlog_recover_new_tid(
        xlog_recover_t          **q,
        xlog_tid_t              tid,
        xfs_lsn_t               lsn)
{
        xlog_recover_t          *trans;

        trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
        trans->r_log_tid   = tid;
        trans->r_lsn       = lsn;
        xlog_recover_put_hashq(q, trans);
}

STATIC int
xlog_recover_unlink_tid(
        xlog_recover_t          **q,
        xlog_recover_t          *trans)
{
        xlog_recover_t          *tp;
        int                     found = 0;

        ASSERT(trans != NULL);
        if (trans == *q) {
                *q = (*q)->r_next;
        } else {
                tp = *q;
                while (tp) {
                        if (tp->r_next == trans) {
                                found = 1;
                                break;
                        }
                        tp = tp->r_next;
                }
                if (!found) {
                        xlog_warn(
                             "XFS: xlog_recover_unlink_tid: trans not found");
                        ASSERT(0);
                        return XFS_ERROR(EIO);
                }
                tp->r_next = tp->r_next->r_next;
        }
        return 0;
}

STATIC void
xlog_recover_insert_item_backq(
        xlog_recover_item_t     **q,
        xlog_recover_item_t     *item)
{
        if (*q == NULL) {
                item->ri_prev = item->ri_next = item;
                *q = item;
        } else {
                item->ri_next           = *q;
                item->ri_prev           = (*q)->ri_prev;
                (*q)->ri_prev           = item;
                item->ri_prev->ri_next  = item;
        }
}

STATIC void
xlog_recover_insert_item_frontq(
        xlog_recover_item_t     **q,
        xlog_recover_item_t     *item)
{
        xlog_recover_insert_item_backq(q, item);
        *q = item;
}

STATIC int
xlog_recover_reorder_trans(
        xlog_recover_t          *trans)
{
        xlog_recover_item_t     *first_item, *itemq, *itemq_next;
        xfs_buf_log_format_t    *buf_f;
        ushort                  flags = 0;

        first_item = itemq = trans->r_itemq;
        trans->r_itemq = NULL;
        do {
                itemq_next = itemq->ri_next;
                buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;

                switch (ITEM_TYPE(itemq)) {
                case XFS_LI_BUF:
                        flags = buf_f->blf_flags;
                        if (!(flags & XFS_BLI_CANCEL)) {
                                xlog_recover_insert_item_frontq(&trans->r_itemq,
                                                                itemq);
                                break;
                        }
                case XFS_LI_INODE:
                case XFS_LI_DQUOT:
                case XFS_LI_QUOTAOFF:
                case XFS_LI_EFD:
                case XFS_LI_EFI:
                        xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
                        break;
                default:
                        xlog_warn(
        "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
                        ASSERT(0);
                        return XFS_ERROR(EIO);
                }
                itemq = itemq_next;
        } while (first_item != itemq);
        return 0;
}

/*
 * Build up the table of buf cancel records so that we don't replay
 * cancelled data in the second pass.  For buffer records that are
 * not cancel records, there is nothing to do here so we just return.
 *
 * If we get a cancel record which is already in the table, this indicates
 * that the buffer was cancelled multiple times.  In order to ensure
 * that during pass 2 we keep the record in the table until we reach its
 * last occurrence in the log, we keep a reference count in the cancel
 * record in the table to tell us how many times we expect to see this
 * record during the second pass.
 */
STATIC void
xlog_recover_do_buffer_pass1(
        xlog_t                  *log,
        xfs_buf_log_format_t    *buf_f)
{
        xfs_buf_cancel_t        *bcp;
        xfs_buf_cancel_t        *nextp;
        xfs_buf_cancel_t        *prevp;
        xfs_buf_cancel_t        **bucket;
        xfs_daddr_t             blkno = 0;
        uint                    len = 0;
        ushort                  flags = 0;

        switch (buf_f->blf_type) {
        case XFS_LI_BUF:
                blkno = buf_f->blf_blkno;
                len = buf_f->blf_len;
                flags = buf_f->blf_flags;
                break;
        }

        /*
         * If this isn't a cancel buffer item, then just return.
         */
        if (!(flags & XFS_BLI_CANCEL))
                return;

        /*
         * Insert an xfs_buf_cancel record into the hash table of
         * them.  If there is already an identical record, bump
         * its reference count.
         */
        bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
                                          XLOG_BC_TABLE_SIZE];
        /*
         * If the hash bucket is empty then just insert a new record into
         * the bucket.
         */
        if (*bucket == NULL) {
                bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
                                                     KM_SLEEP);
                bcp->bc_blkno = blkno;
                bcp->bc_len = len;
                bcp->bc_refcount = 1;
                bcp->bc_next = NULL;
                *bucket = bcp;
                return;
        }

        /*
         * The hash bucket is not empty, so search for duplicates of our
         * record.  If we find one them just bump its refcount.  If not
         * then add us at the end of the list.
         */
        prevp = NULL;
        nextp = *bucket;
        while (nextp != NULL) {
                if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
                        nextp->bc_refcount++;
                        return;
                }
                prevp = nextp;
                nextp = nextp->bc_next;
        }
        ASSERT(prevp != NULL);
        bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
                                             KM_SLEEP);
        bcp->bc_blkno = blkno;
        bcp->bc_len = len;
        bcp->bc_refcount = 1;
        bcp->bc_next = NULL;
        prevp->bc_next = bcp;
}

/*
 * Check to see whether the buffer being recovered has a corresponding
 * entry in the buffer cancel record table.  If it does then return 1
 * so that it will be cancelled, otherwise return 0.  If the buffer is
 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
 * the refcount on the entry in the table and remove it from the table
 * if this is the last reference.
 *
 * We remove the cancel record from the table when we encounter its
 * last occurrence in the log so that if the same buffer is re-used
 * again after its last cancellation we actually replay the changes
 * made at that point.
 */
STATIC int
xlog_check_buffer_cancelled(
        xlog_t                  *log,
        xfs_daddr_t             blkno,
        uint                    len,
        ushort                  flags)
{
        xfs_buf_cancel_t        *bcp;
        xfs_buf_cancel_t        *prevp;
        xfs_buf_cancel_t        **bucket;

        if (log->l_buf_cancel_table == NULL) {
                /*
                 * There is nothing in the table built in pass one,
                 * so this buffer must not be cancelled.
                 */
                ASSERT(!(flags & XFS_BLI_CANCEL));
                return 0;
        }

        bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
                                          XLOG_BC_TABLE_SIZE];
        bcp = *bucket;
        if (bcp == NULL) {
                /*
                 * There is no corresponding entry in the table built
                 * in pass one, so this buffer has not been cancelled.
                 */
                ASSERT(!(flags & XFS_BLI_CANCEL));
                return 0;
        }

        /*
         * Search for an entry in the buffer cancel table that
         * matches our buffer.
         */
        prevp = NULL;
        while (bcp != NULL) {
                if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
                        /*
                         * We've go a match, so return 1 so that the
                         * recovery of this buffer is cancelled.
                         * If this buffer is actually a buffer cancel
                         * log item, then decrement the refcount on the
                         * one in the table and remove it if this is the
                         * last reference.
                         */
                        if (flags & XFS_BLI_CANCEL) {
                                bcp->bc_refcount--;
                                if (bcp->bc_refcount == 0) {
                                        if (prevp == NULL) {
                                                *bucket = bcp->bc_next;
                                        } else {
                                                prevp->bc_next = bcp->bc_next;
                                        }
                                        kmem_free(bcp);
                                }
                        }
                        return 1;
                }
                prevp = bcp;
                bcp = bcp->bc_next;
        }
        /*
         * We didn't find a corresponding entry in the table, so
         * return 0 so that the buffer is NOT cancelled.
         */
        ASSERT(!(flags & XFS_BLI_CANCEL));
        return 0;
}

STATIC int
xlog_recover_do_buffer_pass2(
        xlog_t                  *log,
        xfs_buf_log_format_t    *buf_f)
{
        xfs_daddr_t             blkno = 0;
        ushort                  flags = 0;
        uint                    len = 0;

        switch (buf_f->blf_type) {
        case XFS_LI_BUF:
                blkno = buf_f->blf_blkno;
                flags = buf_f->blf_flags;
                len = buf_f->blf_len;
                break;
        }

        return xlog_check_buffer_cancelled(log, blkno, len, flags);
}

/*
 * Perform recovery for a buffer full of inodes.  In these buffers,
 * the only data which should be recovered is that which corresponds
 * to the di_next_unlinked pointers in the on disk inode structures.
 * The rest of the data for the inodes is always logged through the
 * inodes themselves rather than the inode buffer and is recovered
 * in xlog_recover_do_inode_trans().
 *
 * The only time when buffers full of inodes are fully recovered is
 * when the buffer is full of newly allocated inodes.  In this case
 * the buffer will not be marked as an inode buffer and so will be
 * sent to xlog_recover_do_reg_buffer() below during recovery.
 */
STATIC int
xlog_recover_do_inode_buffer(
        xfs_mount_t             *mp,
        xlog_recover_item_t     *item,
        xfs_buf_t               *bp,
        xfs_buf_log_format_t    *buf_f)
{
        int                     i;
        int                     item_index;
        int                     bit;
        int                     nbits;
        int                     reg_buf_offset;
        int                     reg_buf_bytes;
        int                     next_unlinked_offset;
        int                     inodes_per_buf;
        xfs_agino_t             *logged_nextp;
        xfs_agino_t             *buffer_nextp;
        unsigned int            *data_map = NULL;
        unsigned int            map_size = 0;

        switch (buf_f->blf_type) {
        case XFS_LI_BUF:
                data_map = buf_f->blf_data_map;
                map_size = buf_f->blf_map_size;
                break;
        }
        /*
         * Set the variables corresponding to the current region to
         * 0 so that we'll initialize them on the first pass through
         * the loop.
         */
        reg_buf_offset = 0;
        reg_buf_bytes = 0;
        bit = 0;
        nbits = 0;
        item_index = 0;
        inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
        for (i = 0; i < inodes_per_buf; i++) {
                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
                        offsetof(xfs_dinode_t, di_next_unlinked);

                while (next_unlinked_offset >=
                       (reg_buf_offset + reg_buf_bytes)) {
                        /*
                         * The next di_next_unlinked field is beyond
                         * the current logged region.  Find the next
                         * logged region that contains or is beyond
                         * the current di_next_unlinked field.
                         */
                        bit += nbits;
                        bit = xfs_next_bit(data_map, map_size, bit);

                        /*
                         * If there are no more logged regions in the
                         * buffer, then we're done.
                         */
                        if (bit == -1) {
                                return 0;
                        }

                        nbits = xfs_contig_bits(data_map, map_size,
                                                         bit);
                        ASSERT(nbits > 0);
                        reg_buf_offset = bit << XFS_BLI_SHIFT;
                        reg_buf_bytes = nbits << XFS_BLI_SHIFT;
                        item_index++;
                }

                /*
                 * If the current logged region starts after the current
                 * di_next_unlinked field, then move on to the next
                 * di_next_unlinked field.
                 */
                if (next_unlinked_offset < reg_buf_offset) {
                        continue;
                }

                ASSERT(item->ri_buf[item_index].i_addr != NULL);
                ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
                ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));

                /*
                 * The current logged region contains a copy of the
                 * current di_next_unlinked field.  Extract its value
                 * and copy it to the buffer copy.
                 */
                logged_nextp = (xfs_agino_t *)
                               ((char *)(item->ri_buf[item_index].i_addr) +
                                (next_unlinked_offset - reg_buf_offset));
                if (unlikely(*logged_nextp == 0)) {
                        xfs_fs_cmn_err(CE_ALERT, mp,
                                "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
                                item, bp);
                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
                                         XFS_ERRLEVEL_LOW, mp);
                        return XFS_ERROR(EFSCORRUPTED);
                }

                buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
                                              next_unlinked_offset);
                *buffer_nextp = *logged_nextp;
        }

        return 0;
}

/*
 * Perform a 'normal' buffer recovery.  Each logged region of the
 * buffer should be copied over the corresponding region in the
 * given buffer.  The bitmap in the buf log format structure indicates
 * where to place the logged data.
 */
/*ARGSUSED*/
STATIC void
xlog_recover_do_reg_buffer(
        xlog_recover_item_t     *item,
        xfs_buf_t               *bp,
        xfs_buf_log_format_t    *buf_f)
{
        int                     i;
        int                     bit;
        int                     nbits;
        unsigned int            *data_map = NULL;
        unsigned int            map_size = 0;
        int                     error;

        switch (buf_f->blf_type) {
        case XFS_LI_BUF:
                data_map = buf_f->blf_data_map;
                map_size = buf_f->blf_map_size;
                break;
        }
        bit = 0;
        i = 1;  /* 0 is the buf format structure */
        while (1) {
                bit = xfs_next_bit(data_map, map_size, bit);
                if (bit == -1)
                        break;
                nbits = xfs_contig_bits(data_map, map_size, bit);
                ASSERT(nbits > 0);
                ASSERT(item->ri_buf[i].i_addr != NULL);
                ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
                ASSERT(XFS_BUF_COUNT(bp) >=
                       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));

                /*
                 * Do a sanity check if this is a dquot buffer. Just checking
                 * the first dquot in the buffer should do. XXXThis is
                 * probably a good thing to do for other buf types also.
                 */
                error = 0;
                if (buf_f->blf_flags &
                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
                        error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
                                               item->ri_buf[i].i_addr,
                                               -1, 0, XFS_QMOPT_DOWARN,
                                               "dquot_buf_recover");
                }
                if (!error)
                        memcpy(xfs_buf_offset(bp,
                                (uint)bit << XFS_BLI_SHIFT),    /* dest */
                                item->ri_buf[i].i_addr,         /* source */
                                nbits<<XFS_BLI_SHIFT);          /* length */
                i++;
                bit += nbits;
        }

        /* Shouldn't be any more regions */
        ASSERT(i == item->ri_total);
}

/*
 * Do some primitive error checking on ondisk dquot data structures.
 */
int
xfs_qm_dqcheck(
        xfs_disk_dquot_t *ddq,
        xfs_dqid_t       id,
        uint             type,    /* used only when IO_dorepair is true */
        uint             flags,
        char             *str)
{
        xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
        int             errs = 0;

        /*
         * We can encounter an uninitialized dquot buffer for 2 reasons:
         * 1. If we crash while deleting the quotainode(s), and those blks got
         *    used for user data. This is because we take the path of regular
         *    file deletion; however, the size field of quotainodes is never
         *    updated, so all the tricks that we play in itruncate_finish
         *    don't quite matter.
         *
         * 2. We don't play the quota buffers when there's a quotaoff logitem.
         *    But the allocation will be replayed so we'll end up with an
         *    uninitialized quota block.
         *
         * This is all fine; things are still consistent, and we haven't lost
         * any quota information. Just don't complain about bad dquot blks.
         */
        if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
                if (flags & XFS_QMOPT_DOWARN)
                        cmn_err(CE_ALERT,
                        "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
                        str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
                errs++;
        }
        if (ddq->d_version != XFS_DQUOT_VERSION) {
                if (flags & XFS_QMOPT_DOWARN)
                        cmn_err(CE_ALERT,
                        "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
                        str, id, ddq->d_version, XFS_DQUOT_VERSION);
                errs++;
        }

        if (ddq->d_flags != XFS_DQ_USER &&
            ddq->d_flags != XFS_DQ_PROJ &&
            ddq->d_flags != XFS_DQ_GROUP) {
                if (flags & XFS_QMOPT_DOWARN)
                        cmn_err(CE_ALERT,
                        "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
                        str, id, ddq->d_flags);
                errs++;
        }

        if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
                if (flags & XFS_QMOPT_DOWARN)
                        cmn_err(CE_ALERT,
                        "%s : ondisk-dquot 0x%p, ID mismatch: "
                        "0x%x expected, found id 0x%x",
                        str, ddq, id, be32_to_cpu(ddq->d_id));
                errs++;
        }

        if (!errs && ddq->d_id) {
                if (ddq->d_blk_softlimit &&
                    be64_to_cpu(ddq->d_bcount) >=
                                be64_to_cpu(ddq->d_blk_softlimit)) {
                        if (!ddq->d_btimer) {
                                if (flags & XFS_QMOPT_DOWARN)
                                        cmn_err(CE_ALERT,
                                        "%s : Dquot ID 0x%x (0x%p) "
                                        "BLK TIMER NOT STARTED",
                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
                                errs++;
                        }
                }
                if (ddq->d_ino_softlimit &&
                    be64_to_cpu(ddq->d_icount) >=
                                be64_to_cpu(ddq->d_ino_softlimit)) {
                        if (!ddq->d_itimer) {
                                if (flags & XFS_QMOPT_DOWARN)
                                        cmn_err(CE_ALERT,
                                        "%s : Dquot ID 0x%x (0x%p) "
                                        "INODE TIMER NOT STARTED",
                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
                                errs++;
                        }
                }
                if (ddq->d_rtb_softlimit &&
                    be64_to_cpu(ddq->d_rtbcount) >=
                                be64_to_cpu(ddq->d_rtb_softlimit)) {
                        if (!ddq->d_rtbtimer) {
                                if (flags & XFS_QMOPT_DOWARN)
                                        cmn_err(CE_ALERT,
                                        "%s : Dquot ID 0x%x (0x%p) "
                                        "RTBLK TIMER NOT STARTED",
                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
                                errs++;
                        }
                }
        }

        if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
                return errs;

        if (flags & XFS_QMOPT_DOWARN)
                cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);

        /*
         * Typically, a repair is only requested by quotacheck.
         */
        ASSERT(id != -1);
        ASSERT(flags & XFS_QMOPT_DQREPAIR);
        memset(d, 0, sizeof(xfs_dqblk_t));

        d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
        d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
        d->dd_diskdq.d_flags = type;
        d->dd_diskdq.d_id = cpu_to_be32(id);

        return errs;
}

/*
 * Perform a dquot buffer recovery.
 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
 * Else, treat it as a regular buffer and do recovery.
 */
STATIC void
xlog_recover_do_dquot_buffer(
        xfs_mount_t             *mp,
        xlog_t                  *log,
        xlog_recover_item_t     *item,
        xfs_buf_t               *bp,
        xfs_buf_log_format_t    *buf_f)
{
        uint                    type;

        /*
         * Filesystems are required to send in quota flags at mount time.
         */
        if (mp->m_qflags == 0) {
                return;
        }

        type = 0;
        if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
                type |= XFS_DQ_USER;
        if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
                type |= XFS_DQ_PROJ;
        if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
                type |= XFS_DQ_GROUP;
        /*
         * This type of quotas was turned off, so ignore this buffer
         */
        if (log->l_quotaoffs_flag & type)
                return;

        xlog_recover_do_reg_buffer(item, bp, buf_f);
}

/*
 * This routine replays a modification made to a buffer at runtime.
 * There are actually two types of buffer, regular and inode, which
 * are handled differently.  Inode buffers are handled differently
 * in that we only recover a specific set of data from them, namely
 * the inode di_next_unlinked fields.  This is because all other inode
 * data is actually logged via inode records and any data we replay
 * here which overlaps that may be stale.
 *
 * When meta-data buffers are freed at run time we log a buffer item
 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
 * of the buffer in the log should not be replayed at recovery time.
 * This is so that if the blocks covered by the buffer are reused for
 * file data before we crash we don't end up replaying old, freed
 * meta-data into a user's file.
 *
 * To handle the cancellation of buffer log items, we make two passes
 * over the log during recovery.  During the first we build a table of
 * those buffers which have been cancelled, and during the second we
 * only replay those buffers which do not have corresponding cancel
 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
 * for more details on the implementation of the table of cancel records.
 */
STATIC int
xlog_recover_do_buffer_trans(
        xlog_t                  *log,
        xlog_recover_item_t     *item,
        int                     pass)
{
        xfs_buf_log_format_t    *buf_f;
        xfs_mount_t             *mp;
        xfs_buf_t               *bp;
        int                     error;
        int                     cancel;
        xfs_daddr_t             blkno;
        int                     len;
        ushort                  flags;

        buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;

        if (pass == XLOG_RECOVER_PASS1) {
                /*
                 * In this pass we're only looking for buf items
                 * with the XFS_BLI_CANCEL bit set.
                 */
                xlog_recover_do_buffer_pass1(log, buf_f);
                return 0;
        } else {
                /*
                 * In this pass we want to recover all the buffers
                 * which have not been cancelled and are not
                 * cancellation buffers themselves.  The routine
                 * we call here will tell us whether or not to
                 * continue with the replay of this buffer.
                 */
                cancel = xlog_recover_do_buffer_pass2(log, buf_f);
                if (cancel) {
                        return 0;
                }
        }
        switch (buf_f->blf_type) {
        case XFS_LI_BUF:
                blkno = buf_f->blf_blkno;
                len = buf_f->blf_len;
                flags = buf_f->blf_flags;
                break;
        default:
                xfs_fs_cmn_err(CE_ALERT, log->l_mp,
                        "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
                        buf_f->blf_type, log->l_mp->m_logname ?
                        log->l_mp->m_logname : "internal");
                XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
                                 XFS_ERRLEVEL_LOW, log->l_mp);
                return XFS_ERROR(EFSCORRUPTED);
        }

        mp = log->l_mp;
        if (flags & XFS_BLI_INODE_BUF) {
                bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
                                                                XFS_BUF_LOCK);
        } else {
                bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
        }
        if (XFS_BUF_ISERROR(bp)) {
                xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
                                  bp, blkno);
                error = XFS_BUF_GETERROR(bp);
                xfs_buf_relse(bp);
                return error;
        }

        error = 0;
        if (flags & XFS_BLI_INODE_BUF) {
                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
        } else if (flags &
                  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
                xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
        } else {
                xlog_recover_do_reg_buffer(item, bp, buf_f);
        }
        if (error)
                return XFS_ERROR(error);

        /*
         * Perform delayed write on the buffer.  Asynchronous writes will be
         * slower when taking into account all the buffers to be flushed.
         *
         * Also make sure that only inode buffers with good sizes stay in
         * the buffer cache.  The kernel moves inodes in buffers of 1 block
         * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
         * buffers in the log can be a different size if the log was generated
         * by an older kernel using unclustered inode buffers or a newer kernel
         * running with a different inode cluster size.  Regardless, if the
         * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
         * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
         * the buffer out of the buffer cache so that the buffer won't
         * overlap with future reads of those inodes.
         */
        if (XFS_DINODE_MAGIC ==
            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
            (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
                        (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
                XFS_BUF_STALE(bp);
                error = xfs_bwrite(mp, bp);
        } else {
                ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
                       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
                XFS_BUF_SET_FSPRIVATE(bp, mp);
                XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
                xfs_bdwrite(mp, bp);
        }

        return (error);
}

STATIC int
xlog_recover_do_inode_trans(
        xlog_t                  *log,
        xlog_recover_item_t     *item,
        int                     pass)
{
        xfs_inode_log_format_t  *in_f;
        xfs_mount_t             *mp;
        xfs_buf_t               *bp;
        xfs_imap_t              imap;
        xfs_dinode_t            *dip;
        xfs_ino_t               ino;
        int                     len;
        xfs_caddr_t             src;
        xfs_caddr_t             dest;
        int                     error;
        int                     attr_index;
        uint                    fields;
        xfs_icdinode_t          *dicp;
        int                     need_free = 0;

        if (pass == XLOG_RECOVER_PASS1) {
                return 0;
        }

        if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
                in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
        } else {
                in_f = (xfs_inode_log_format_t *)kmem_alloc(
                        sizeof(xfs_inode_log_format_t), KM_SLEEP);
                need_free = 1;
                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
                if (error)
                        goto error;
        }
        ino = in_f->ilf_ino;
        mp = log->l_mp;
        if (ITEM_TYPE(item) == XFS_LI_INODE) {
                imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
                imap.im_len = in_f->ilf_len;
                imap.im_boffset = in_f->ilf_boffset;
        } else {
                /*
                 * It's an old inode format record.  We don't know where
                 * its cluster is located on disk, and we can't allow
                 * xfs_imap() to figure it out because the inode btrees
                 * are not ready to be used.  Therefore do not pass the
                 * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
                 * us only the single block in which the inode lives
                 * rather than its cluster, so we must make sure to
                 * invalidate the buffer when we write it out below.
                 */
                imap.im_blkno = 0;
                error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
                if (error)
                        goto error;
        }

        /*
         * Inode buffers can be freed, look out for it,
         * and do not replay the inode.
         */
        if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
                error = 0;
                goto error;
        }

        bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
                                                                XFS_BUF_LOCK);
        if (XFS_BUF_ISERROR(bp)) {
                xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
                                  bp, imap.im_blkno);
                error = XFS_BUF_GETERROR(bp);
                xfs_buf_relse(bp);
                goto error;
        }
        error = 0;
        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
        dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);

        /*
         * Make sure the place we're flushing out to really looks
         * like an inode!
         */
        if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
                xfs_buf_relse(bp);
                xfs_fs_cmn_err(CE_ALERT, mp,
                        "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
                        dip, bp, ino);
                XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
                                 XFS_ERRLEVEL_LOW, mp);
                error = EFSCORRUPTED;
                goto error;
        }
        dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
        if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
                xfs_buf_relse(bp);
                xfs_fs_cmn_err(CE_ALERT, mp,
                        "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
                        item, ino);
                XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
                                 XFS_ERRLEVEL_LOW, mp);
                error = EFSCORRUPTED;
                goto error;
        }

        /* Skip replay when the on disk inode is newer than the log one */
        if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
                /*
                 * Deal with the wrap case, DI_MAX_FLUSH is less
                 * than smaller numbers
                 */
                if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
                    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
                        /* do nothing */
                } else {
                        xfs_buf_relse(bp);
                        error = 0;
                        goto error;
                }
        }
        /* Take the opportunity to reset the flush iteration count */
        dicp->di_flushiter = 0;

        if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
                    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
                        XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
                                         XFS_ERRLEVEL_LOW, mp, dicp);
                        xfs_buf_relse(bp);
                        xfs_fs_cmn_err(CE_ALERT, mp,
                                "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
                                item, dip, bp, ino);
                        error = EFSCORRUPTED;
                        goto error;
                }
        } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
                    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
                    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
                        XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
                                             XFS_ERRLEVEL_LOW, mp, dicp);
                        xfs_buf_relse(bp);
                        xfs_fs_cmn_err(CE_ALERT, mp,
                                "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
                                item, dip, bp, ino);
                        error = EFSCORRUPTED;
                        goto error;
                }
        }
        if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
                XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
                                     XFS_ERRLEVEL_LOW, mp, dicp);
                xfs_buf_relse(bp);
                xfs_fs_cmn_err(CE_ALERT, mp,
                        "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
                        item, dip, bp, ino,
                        dicp->di_nextents + dicp->di_anextents,
                        dicp->di_nblocks);
                error = EFSCORRUPTED;
                goto error;
        }
        if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
                XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
                                     XFS_ERRLEVEL_LOW, mp, dicp);
                xfs_buf_relse(bp);
                xfs_fs_cmn_err(CE_ALERT, mp,
                        "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
                        item, dip, bp, ino, dicp->di_forkoff);
                error = EFSCORRUPTED;
                goto error;
        }
        if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
                XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
                                     XFS_ERRLEVEL_LOW, mp, dicp);
                xfs_buf_relse(bp);
                xfs_fs_cmn_err(CE_ALERT, mp,
                        "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
                        item->ri_buf[1].i_len, item);
                error = EFSCORRUPTED;
                goto error;
        }

        /* The core is in in-core format */
        xfs_dinode_to_disk(&dip->di_core,
                (xfs_icdinode_t *)item->ri_buf[1].i_addr);

        /* the rest is in on-disk format */
        if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
                memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
                        item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
                        item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
        }

        fields = in_f->ilf_fields;
        switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
        case XFS_ILOG_DEV:
                dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
                break;
        case XFS_ILOG_UUID:
                dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
                break;
        }

        if (in_f->ilf_size == 2)
                goto write_inode_buffer;
        len = item->ri_buf[2].i_len;
        src = item->ri_buf[2].i_addr;
        ASSERT(in_f->ilf_size <= 4);
        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
        ASSERT(!(fields & XFS_ILOG_DFORK) ||
               (len == in_f->ilf_dsize));

        switch (fields & XFS_ILOG_DFORK) {
        case XFS_ILOG_DDATA:
        case XFS_ILOG_DEXT:
                memcpy(&dip->di_u, src, len);
                break;

        case XFS_ILOG_DBROOT:
                xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
                                 &(dip->di_u.di_bmbt),
                                 XFS_DFORK_DSIZE(dip, mp));
                break;

        default:
                /*
                 * There are no data fork flags set.
                 */
                ASSERT((fields & XFS_ILOG_DFORK) == 0);
                break;
        }

        /*
         * If we logged any attribute data, recover it.  There may or
         * may not have been any other non-core data logged in this
         * transaction.
         */
        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
                        attr_index = 3;
                } else {
                        attr_index = 2;
                }
                len = item->ri_buf[attr_index].i_len;
                src = item->ri_buf[attr_index].i_addr;
                ASSERT(len == in_f->ilf_asize);

                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
                case XFS_ILOG_ADATA:
                case XFS_ILOG_AEXT:
                        dest = XFS_DFORK_APTR(dip);
                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
                        memcpy(dest, src, len);
                        break;

                case XFS_ILOG_ABROOT:
                        dest = XFS_DFORK_APTR(dip);
                        xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
                                         (xfs_bmdr_block_t*)dest,
                                         XFS_DFORK_ASIZE(dip, mp));
                        break;

                default:
                        xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
                        ASSERT(0);
                        xfs_buf_relse(bp);
                        error = EIO;
                        goto error;
                }
        }

write_inode_buffer:
        if (ITEM_TYPE(item) == XFS_LI_INODE) {
                ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
                       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
                XFS_BUF_SET_FSPRIVATE(bp, mp);
                XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
                xfs_bdwrite(mp, bp);
        } else {
                XFS_BUF_STALE(bp);
                error = xfs_bwrite(mp, bp);
        }

error:
        if (need_free)
                kmem_free(in_f);
        return XFS_ERROR(error);
}

/*
 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
 * structure, so that we know not to do any dquot item or dquot buffer recovery,
 * of that type.
 */
STATIC int
xlog_recover_do_quotaoff_trans(
        xlog_t                  *log,
        xlog_recover_item_t     *item,
        int                     pass)
{
        xfs_qoff_logformat_t    *qoff_f;

        if (pass == XLOG_RECOVER_PASS2) {
                return (0);
        }

        qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
        ASSERT(qoff_f);

        /*
         * The logitem format's flag tells us if this was user quotaoff,
         * group/project quotaoff or both.
         */
        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
                log->l_quotaoffs_flag |= XFS_DQ_USER;
        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
                log->l_quotaoffs_flag |= XFS_DQ_GROUP;

        return (0);
}

/*
 * Recover a dquot record
 */
STATIC int
xlog_recover_do_dquot_trans(
        xlog_t                  *log,
        xlog_recover_item_t     *item,
        int                     pass)
{
        xfs_mount_t             *mp;
        xfs_buf_t               *bp;
        struct xfs_disk_dquot   *ddq, *recddq;
        int                     error;
        xfs_dq_logformat_t      *dq_f;
        uint                    type;

        if (pass == XLOG_RECOVER_PASS1) {
                return 0;
        }
        mp = log->l_mp;

        /*
         * Filesystems are required to send in quota flags at mount time.
         */
        if (mp->m_qflags == 0)
                return (0);

        recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
        ASSERT(recddq);
        /*
         * This type of quotas was turned off, so ignore this record.
         */
        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
        ASSERT(type);
        if (log->l_quotaoffs_flag & type)
                return (0);

        /*
         * At this point we know that quota was _not_ turned off.
         * Since the mount flags are not indicating to us otherwise, this
         * must mean that quota is on, and the dquot needs to be replayed.
         * Remember that we may not have fully recovered the superblock yet,
         * so we can't do the usual trick of looking at the SB quota bits.
         *
         * The other possibility, of course, is that the quota subsystem was
         * removed since the last mount - ENOSYS.
         */
        dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
        ASSERT(dq_f);
        if ((error = xfs_qm_dqcheck(recddq,
                           dq_f->qlf_id,
                           0, XFS_QMOPT_DOWARN,
                           "xlog_recover_do_dquot_trans (log copy)"))) {
                return XFS_ERROR(EIO);
        }
        ASSERT(dq_f->qlf_len == 1);

        error = xfs_read_buf(mp, mp->m_ddev_targp,
                             dq_f->qlf_blkno,
                             XFS_FSB_TO_BB(mp, dq_f->qlf_len),
                             0, &bp);
        if (error) {
                xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
                                  bp, dq_f->qlf_blkno);
                return error;
        }
        ASSERT(bp);
        ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);

        /*
         * At least the magic num portion should be on disk because this
         * was among a chunk of dquots created earlier, and we did some
         * minimal initialization then.
         */
        if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
                           "xlog_recover_do_dquot_trans")) {
                xfs_buf_relse(bp);
                return XFS_ERROR(EIO);
        }

        memcpy(ddq, recddq, item->ri_buf[1].i_len);

        ASSERT(dq_f->qlf_size == 2);
        ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
               XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
        XFS_BUF_SET_FSPRIVATE(bp, mp);
        XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
        xfs_bdwrite(mp, bp);

        return (0);
}

/*
 * This routine is called to create an in-core extent free intent
 * item from the efi format structure which was logged on disk.
 * It allocates an in-core efi, copies the extents from the format
 * structure into it, and adds the efi to the AIL with the given
 * LSN.
 */
STATIC int
xlog_recover_do_efi_trans(
        xlog_t                  *log,
        xlog_recover_item_t     *item,
        xfs_lsn_t               lsn,
        int                     pass)
{
        int                     error;
        xfs_mount_t             *mp;
        xfs_efi_log_item_t      *efip;
        xfs_efi_log_format_t    *efi_formatp;

        if (pass == XLOG_RECOVER_PASS1) {
                return 0;
        }

        efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;

        mp = log->l_mp;
        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
        if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
                                         &(efip->efi_format)))) {
                xfs_efi_item_free(efip);
                return error;
        }
        efip->efi_next_extent = efi_formatp->efi_nextents;
        efip->efi_flags |= XFS_EFI_COMMITTED;

        spin_lock(&mp->m_ail_lock);
        /*
         * xfs_trans_update_ail() drops the AIL lock.
         */
        xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
        return 0;
}


/*
 * This routine is called when an efd format structure is found in
 * a committed transaction in the log.  It's purpose is to cancel
 * the corresponding efi if it was still in the log.  To do this
 * it searches the AIL for the efi with an id equal to that in the
 * efd format structure.  If we find it, we remove the efi from the
 * AIL and free it.
 */
STATIC void
xlog_recover_do_efd_trans(
        xlog_t                  *log,
        xlog_recover_item_t     *item,
        int                     pass)
{
        xfs_mount_t             *mp;
        xfs_efd_log_format_t    *efd_formatp;
        xfs_efi_log_item_t      *efip = NULL;
        xfs_log_item_t          *lip;
        int                     gen;
        __uint64_t              efi_id;

        if (pass == XLOG_RECOVER_PASS1) {
                return;
        }

        efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
        efi_id = efd_formatp->efd_efi_id;

        /*
         * Search for the efi with the id in the efd format structure
         * in the AIL.
         */
        mp = log->l_mp;
        spin_lock(&mp->m_ail_lock);
        lip = xfs_trans_first_ail(mp, &gen);
        while (lip != NULL) {
                if (lip->li_type == XFS_LI_EFI) {
                        efip = (xfs_efi_log_item_t *)lip;
                        if (efip->efi_format.efi_id == efi_id) {
                                /*
                                 * xfs_trans_delete_ail() drops the
                                 * AIL lock.
                                 */
                                xfs_trans_delete_ail(mp, lip);
                                xfs_efi_item_free(efip);
                                return;
                        }
                }
                lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
        }
        spin_unlock(&mp->m_ail_lock);
}

/*
 * Perform the transaction
 *
 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
 * EFIs and EFDs get queued up by adding entries into the AIL for them.
 */
STATIC int
xlog_recover_do_trans(
        xlog_t                  *log,
        xlog_recover_t          *trans,
        int                     pass)
{
        int                     error = 0;
        xlog_recover_item_t     *item, *first_item;

        if ((error = xlog_recover_reorder_trans(trans)))
                return error;
        first_item = item = trans->r_itemq;
        do {
                /*
                 * we don't need to worry about the block number being
                 * truncated in > 1 TB buffers because in user-land,
                 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
                 * the blknos will get through the user-mode buffer
                 * cache properly.  The only bad case is o32 kernels
                 * where xfs_daddr_t is 32-bits but mount will warn us
                 * off a > 1 TB filesystem before we get here.
                 */
                if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
                        if  ((error = xlog_recover_do_buffer_trans(log, item,
                                                                 pass)))
                                break;
                } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
                        if ((error = xlog_recover_do_inode_trans(log, item,
                                                                pass)))
                                break;
                } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
                        if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
                                                  pass)))
                                break;
                } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
                        xlog_recover_do_efd_trans(log, item, pass);
                } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
                        if ((error = xlog_recover_do_dquot_trans(log, item,
                                                                   pass)))
                                        break;
                } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
                        if ((error = xlog_recover_do_quotaoff_trans(log, item,
                                                                   pass)))
                                        break;
                } else {
                        xlog_warn("XFS: xlog_recover_do_trans");
                        ASSERT(0);
                        error = XFS_ERROR(EIO);
                        break;
                }
                item = item->ri_next;
        } while (first_item != item);

        return error;
}

/*
 * Free up any resources allocated by the transaction
 *
 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
 */
STATIC void
xlog_recover_free_trans(
        xlog_recover_t          *trans)
{
        xlog_recover_item_t     *first_item, *item, *free_item;
        int                     i;

        item = first_item = trans->r_itemq;
        do {
                free_item = item;
                item = item->ri_next;
                 /* Free the regions in the item. */
                for (i = 0; i < free_item->ri_cnt; i++) {
                        kmem_free(free_item->ri_buf[i].i_addr);
                }
                /* Free the item itself */
                kmem_free(free_item->ri_buf);
                kmem_free(free_item);
        } while (first_item != item);
        /* Free the transaction recover structure */
        kmem_free(trans);
}

STATIC int
xlog_recover_commit_trans(
        xlog_t                  *log,
        xlog_recover_t          **q,
        xlog_recover_t          *trans,
        int                     pass)
{
        int                     error;

        if ((error = xlog_recover_unlink_tid(q, trans)))
                return error;
        if ((error = xlog_recover_do_trans(log, trans, pass)))
                return error;
        xlog_recover_free_trans(trans);                 /* no error */
        return 0;
}

STATIC int
xlog_recover_unmount_trans(
        xlog_recover_t          *trans)
{
        /* Do nothing now */
        xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
        return 0;
}

/*
 * There are two valid states of the r_state field.  0 indicates that the
 * transaction structure is in a normal state.  We have either seen the
 * start of the transaction or the last operation we added was not a partial
 * operation.  If the last operation we added to the transaction was a
 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
 *
 * NOTE: skip LRs with 0 data length.
 */
STATIC int
xlog_recover_process_data(
        xlog_t                  *log,
        xlog_recover_t          *rhash[],
        xlog_rec_header_t       *rhead,
        xfs_caddr_t             dp,
        int                     pass)
{
        xfs_caddr_t             lp;
        int                     num_logops;
        xlog_op_header_t        *ohead;
        xlog_recover_t          *trans;
        xlog_tid_t              tid;
        int                     error;
        unsigned long           hash;
        uint                    flags;

        lp = dp + be32_to_cpu(rhead->h_len);
        num_logops = be32_to_cpu(rhead->h_num_logops);

        /* check the log format matches our own - else we can't recover */
        if (xlog_header_check_recover(log->l_mp, rhead))
                return (XFS_ERROR(EIO));

        while ((dp < lp) && num_logops) {
                ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
                ohead = (xlog_op_header_t *)dp;
                dp += sizeof(xlog_op_header_t);
                if (ohead->oh_clientid != XFS_TRANSACTION &&
                    ohead->oh_clientid != XFS_LOG) {
                        xlog_warn(
                "XFS: xlog_recover_process_data: bad clientid");
                        ASSERT(0);
                        return (XFS_ERROR(EIO));
                }
                tid = be32_to_cpu(ohead->oh_tid);
                hash = XLOG_RHASH(tid);
                trans = xlog_recover_find_tid(rhash[hash], tid);
                if (trans == NULL) {               /* not found; add new tid */
                        if (ohead->oh_flags & XLOG_START_TRANS)
                                xlog_recover_new_tid(&rhash[hash], tid,
                                        be64_to_cpu(rhead->h_lsn));
                } else {
                        if (dp + be32_to_cpu(ohead->oh_len) > lp) {
                                xlog_warn(
                        "XFS: xlog_recover_process_data: bad length");
                                WARN_ON(1);
                                return (XFS_ERROR(EIO));
                        }
                        flags = ohead->oh_flags & ~XLOG_END_TRANS;
                        if (flags & XLOG_WAS_CONT_TRANS)
                                flags &= ~XLOG_CONTINUE_TRANS;
                        switch (flags) {
                        case XLOG_COMMIT_TRANS:
                                error = xlog_recover_commit_trans(log,
                                                &rhash[hash], trans, pass);
                                break;
                        case XLOG_UNMOUNT_TRANS:
                                error = xlog_recover_unmount_trans(trans);
                                break;
                        case XLOG_WAS_CONT_TRANS:
                                error = xlog_recover_add_to_cont_trans(trans,
                                                dp, be32_to_cpu(ohead->oh_len));
                                break;
                        case XLOG_START_TRANS:
                                xlog_warn(
                        "XFS: xlog_recover_process_data: bad transaction");
                                ASSERT(0);
                                error = XFS_ERROR(EIO);
                                break;
                        case 0:
                        case XLOG_CONTINUE_TRANS:
                                error = xlog_recover_add_to_trans(trans,
                                                dp, be32_to_cpu(ohead->oh_len));
                                break;
                        default:
                                xlog_warn(
                        "XFS: xlog_recover_process_data: bad flag");
                                ASSERT(0);
                                error = XFS_ERROR(EIO);
                                break;
                        }
                        if (error)
                                return error;
                }
                dp += be32_to_cpu(ohead->oh_len);
                num_logops--;
        }
        return 0;
}

/*
 * Process an extent free intent item that was recovered from
 * the log.  We need to free the extents that it describes.
 */
STATIC int
xlog_recover_process_efi(
        xfs_mount_t             *mp,
        xfs_efi_log_item_t      *efip)
{
        xfs_efd_log_item_t      *efdp;
        xfs_trans_t             *tp;
        int                     i;
        int                     error = 0;
        xfs_extent_t            *extp;
        xfs_fsblock_t           startblock_fsb;

        ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));

        /*
         * First check the validity of the extents described by the
         * EFI.  If any are bad, then assume that all are bad and
         * just toss the EFI.
         */
        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
                extp = &(efip->efi_format.efi_extents[i]);
                startblock_fsb = XFS_BB_TO_FSB(mp,
                                   XFS_FSB_TO_DADDR(mp, extp->ext_start));
                if ((startblock_fsb == 0) ||
                    (extp->ext_len == 0) ||
                    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
                    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
                        /*
                         * This will pull the EFI from the AIL and
                         * free the memory associated with it.
                         */
                        xfs_efi_release(efip, efip->efi_format.efi_nextents);
                        return XFS_ERROR(EIO);
                }
        }

        tp = xfs_trans_alloc(mp, 0);
        error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
        if (error)
                goto abort_error;
        efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);

        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
                extp = &(efip->efi_format.efi_extents[i]);
                error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
                if (error)
                        goto abort_error;
                xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
                                         extp->ext_len);
        }

        efip->efi_flags |= XFS_EFI_RECOVERED;
        error = xfs_trans_commit(tp, 0);
        return error;

abort_error:
        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
        return error;
}

/*
 * Verify that once we've encountered something other than an EFI
 * in the AIL that there are no more EFIs in the AIL.
 */
#if defined(DEBUG)
STATIC void
xlog_recover_check_ail(
        xfs_mount_t             *mp,
        xfs_log_item_t          *lip,
        int                     gen)
{
        int                     orig_gen = gen;

        do {
                ASSERT(lip->li_type != XFS_LI_EFI);
                lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
                /*
                 * The check will be bogus if we restart from the
                 * beginning of the AIL, so ASSERT that we don't.
                 * We never should since we're holding the AIL lock
                 * the entire time.
                 */
                ASSERT(gen == orig_gen);
        } while (lip != NULL);
}
#endif  /* DEBUG */

/*
 * When this is called, all of the EFIs which did not have
 * corresponding EFDs should be in the AIL.  What we do now
 * is free the extents associated with each one.
 *
 * Since we process the EFIs in normal transactions, they
 * will be removed at some point after the commit.  This prevents
 * us from just walking down the list processing each one.
 * We'll use a flag in the EFI to skip those that we've already
 * processed and use the AIL iteration mechanism's generation
 * count to try to speed this up at least a bit.
 *
 * When we start, we know that the EFIs are the only things in
 * the AIL.  As we process them, however, other items are added
 * to the AIL.  Since everything added to the AIL must come after
 * everything already in the AIL, we stop processing as soon as
 * we see something other than an EFI in the AIL.
 */
STATIC int
xlog_recover_process_efis(
        xlog_t                  *log)
{
        xfs_log_item_t          *lip;
        xfs_efi_log_item_t      *efip;
        int                     gen;
        xfs_mount_t             *mp;
        int                     error = 0;

        mp = log->l_mp;
        spin_lock(&mp->m_ail_lock);

        lip = xfs_trans_first_ail(mp, &gen);
        while (lip != NULL) {
                /*
                 * We're done when we see something other than an EFI.
                 */
                if (lip->li_type != XFS_LI_EFI) {
                        xlog_recover_check_ail(mp, lip, gen);
                        break;
                }

                /*
                 * Skip EFIs that we've already processed.
                 */
                efip = (xfs_efi_log_item_t *)lip;
                if (efip->efi_flags & XFS_EFI_RECOVERED) {
                        lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
                        continue;
                }

                spin_unlock(&mp->m_ail_lock);
                error = xlog_recover_process_efi(mp, efip);
                if (error)
                        return error;
                spin_lock(&mp->m_ail_lock);
                lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
        }
        spin_unlock(&mp->m_ail_lock);
        return error;
}

/*
 * This routine performs a transaction to null out a bad inode pointer
 * in an agi unlinked inode hash bucket.
 */
STATIC void
xlog_recover_clear_agi_bucket(
        xfs_mount_t     *mp,
        xfs_agnumber_t  agno,
        int             bucket)
{
        xfs_trans_t     *tp;
        xfs_agi_t       *agi;
        xfs_buf_t       *agibp;
        int             offset;
        int             error;

        tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
        error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
        if (!error)
                error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
                                   XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
                                   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
        if (error)
                goto out_abort;

        error = EINVAL;
        agi = XFS_BUF_TO_AGI(agibp);
        if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
                goto out_abort;

        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
        offset = offsetof(xfs_agi_t, agi_unlinked) +
                 (sizeof(xfs_agino_t) * bucket);
        xfs_trans_log_buf(tp, agibp, offset,
                          (offset + sizeof(xfs_agino_t) - 1));

        error = xfs_trans_commit(tp, 0);
        if (error)
                goto out_error;
        return;

out_abort:
        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
out_error:
        xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
                        "failed to clear agi %d. Continuing.", agno);
        return;
}

/*
 * xlog_iunlink_recover
 *
 * This is called during recovery to process any inodes which
 * we unlinked but not freed when the system crashed.  These
 * inodes will be on the lists in the AGI blocks.  What we do
 * here is scan all the AGIs and fully truncate and free any
 * inodes found on the lists.  Each inode is removed from the
 * lists when it has been fully truncated and is freed.  The
 * freeing of the inode and its removal from the list must be
 * atomic.
 */
void
xlog_recover_process_iunlinks(
        xlog_t          *log)
{
        xfs_mount_t     *mp;
        xfs_agnumber_t  agno;
        xfs_agi_t       *agi;
        xfs_buf_t       *agibp;
        xfs_buf_t       *ibp;
        xfs_dinode_t    *dip;
        xfs_inode_t     *ip;
        xfs_agino_t     agino;
        xfs_ino_t       ino;
        int             bucket;
        int             error;
        uint            mp_dmevmask;

        mp = log->l_mp;

        /*
         * Prevent any DMAPI event from being sent while in this function.
         */
        mp_dmevmask = mp->m_dmevmask;
        mp->m_dmevmask = 0;

        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
                /*
                 * Find the agi for this ag.
                 */
                agibp = xfs_buf_read(mp->m_ddev_targp,
                                XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
                                XFS_FSS_TO_BB(mp, 1), 0);
                if (XFS_BUF_ISERROR(agibp)) {
                        xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
                                log->l_mp, agibp,
                                XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
                }
                agi = XFS_BUF_TO_AGI(agibp);
                ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));

                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {

                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
                        while (agino != NULLAGINO) {

                                /*
                                 * Release the agi buffer so that it can
                                 * be acquired in the normal course of the
                                 * transaction to truncate and free the inode.
                                 */
                                xfs_buf_relse(agibp);

                                ino = XFS_AGINO_TO_INO(mp, agno, agino);
                                error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
                                ASSERT(error || (ip != NULL));

                                if (!error) {
                                        /*
                                         * Get the on disk inode to find the
                                         * next inode in the bucket.
                                         */
                                        error = xfs_itobp(mp, NULL, ip, &dip,
                                                        &ibp, 0, 0,
                                                        XFS_BUF_LOCK);
                                        ASSERT(error || (dip != NULL));
                                }

                                if (!error) {
                                        ASSERT(ip->i_d.di_nlink == 0);

                                        /* setup for the next pass */
                                        agino = be32_to_cpu(
                                                        dip->di_next_unlinked);
                                        xfs_buf_relse(ibp);
                                        /*
                                         * Prevent any DMAPI event from
                                         * being sent when the
                                         * reference on the inode is
                                         * dropped.
                                         */
                                        ip->i_d.di_dmevmask = 0;

                                        /*
                                         * If this is a new inode, handle
                                         * it specially.  Otherwise,
                                         * just drop our reference to the
                                         * inode.  If there are no
                                         * other references, this will
                                         * send the inode to
                                         * xfs_inactive() which will
                                         * truncate the file and free
                                         * the inode.
                                         */
                                        if (ip->i_d.di_mode == 0)
                                                xfs_iput_new(ip, 0);
                                        else
                                                IRELE(ip);
                                } else {
                                        /*
                                         * We can't read in the inode
                                         * this bucket points to, or
                                         * this inode is messed up.  Just
                                         * ditch this bucket of inodes.  We
                                         * will lose some inodes and space,
                                         * but at least we won't hang.  Call
                                         * xlog_recover_clear_agi_bucket()
                                         * to perform a transaction to clear
                                         * the inode pointer in the bucket.
                                         */
                                        xlog_recover_clear_agi_bucket(mp, agno,
                                                        bucket);

                                        agino = NULLAGINO;
                                }

                                /*
                                 * Reacquire the agibuffer and continue around
                                 * the loop.
                                 */
                                agibp = xfs_buf_read(mp->m_ddev_targp,
                                                XFS_AG_DADDR(mp, agno,
                                                        XFS_AGI_DADDR(mp)),
                                                XFS_FSS_TO_BB(mp, 1), 0);
                                if (XFS_BUF_ISERROR(agibp)) {
                                        xfs_ioerror_alert(
                                "xlog_recover_process_iunlinks(#2)",
                                                log->l_mp, agibp,
                                                XFS_AG_DADDR(mp, agno,
                                                        XFS_AGI_DADDR(mp)));
                                }
                                agi = XFS_BUF_TO_AGI(agibp);
                                ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
                                        agi->agi_magicnum));
                        }
                }

                /*
                 * Release the buffer for the current agi so we can
                 * go on to the next one.
                 */
                xfs_buf_relse(agibp);
        }

        mp->m_dmevmask = mp_dmevmask;
}


#ifdef DEBUG
STATIC void
xlog_pack_data_checksum(
        xlog_t          *log,
        xlog_in_core_t  *iclog,
        int             size)
{
        int             i;
        __be32          *up;
        uint            chksum = 0;

        up = (__be32 *)iclog->ic_datap;
        /* divide length by 4 to get # words */
        for (i = 0; i < (size >> 2); i++) {
                chksum ^= be32_to_cpu(*up);
                up++;
        }
        iclog->ic_header.h_chksum = cpu_to_be32(chksum);
}
#else
#define xlog_pack_data_checksum(log, iclog, size)
#endif

/*
 * Stamp cycle number in every block
 */
void
xlog_pack_data(
        xlog_t                  *log,
        xlog_in_core_t          *iclog,
        int                     roundoff)
{
        int                     i, j, k;
        int                     size = iclog->ic_offset + roundoff;
        __be32                  cycle_lsn;
        xfs_caddr_t             dp;
        xlog_in_core_2_t        *xhdr;

        xlog_pack_data_checksum(log, iclog, size);

        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);

        dp = iclog->ic_datap;
        for (i = 0; i < BTOBB(size) &&
                i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
                *(__be32 *)dp = cycle_lsn;
                dp += BBSIZE;
        }

        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
                xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
                for ( ; i < BTOBB(size); i++) {
                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
                        *(__be32 *)dp = cycle_lsn;
                        dp += BBSIZE;
                }

                for (i = 1; i < log->l_iclog_heads; i++) {
                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
                }
        }
}

#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
STATIC void
xlog_unpack_data_checksum(
        xlog_rec_header_t       *rhead,
        xfs_caddr_t             dp,
        xlog_t                  *log)
{
        __be32                  *up = (__be32 *)dp;
        uint                    chksum = 0;
        int                     i;

        /* divide length by 4 to get # words */
        for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
                chksum ^= be32_to_cpu(*up);
                up++;
        }
        if (chksum != be32_to_cpu(rhead->h_chksum)) {
            if (rhead->h_chksum ||
                ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
                    cmn_err(CE_DEBUG,
                        "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
                            be32_to_cpu(rhead->h_chksum), chksum);
                    cmn_err(CE_DEBUG,
"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
                    if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
                            cmn_err(CE_DEBUG,
                                "XFS: LogR this is a LogV2 filesystem\n");
                    }
                    log->l_flags |= XLOG_CHKSUM_MISMATCH;
            }
        }
}
#else
#define xlog_unpack_data_checksum(rhead, dp, log)
#endif

STATIC void
xlog_unpack_data(
        xlog_rec_header_t       *rhead,
        xfs_caddr_t             dp,
        xlog_t                  *log)
{
        int                     i, j, k;
        xlog_in_core_2_t        *xhdr;

        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
                dp += BBSIZE;
        }

        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
                xhdr = (xlog_in_core_2_t *)rhead;
                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
                        dp += BBSIZE;
                }
        }

        xlog_unpack_data_checksum(rhead, dp, log);
}

STATIC int
xlog_valid_rec_header(
        xlog_t                  *log,
        xlog_rec_header_t       *rhead,
        xfs_daddr_t             blkno)
{
        int                     hlen;

        if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
                                XFS_ERRLEVEL_LOW, log->l_mp);
                return XFS_ERROR(EFSCORRUPTED);
        }
        if (unlikely(
            (!rhead->h_version ||
            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
                xlog_warn("XFS: %s: unrecognised log version (%d).",
                        __func__, be32_to_cpu(rhead->h_version));
                return XFS_ERROR(EIO);
        }

        /* LR body must have data or it wouldn't have been written */
        hlen = be32_to_cpu(rhead->h_len);
        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
                                XFS_ERRLEVEL_LOW, log->l_mp);
                return XFS_ERROR(EFSCORRUPTED);
        }
        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
                                XFS_ERRLEVEL_LOW, log->l_mp);
                return XFS_ERROR(EFSCORRUPTED);
        }
        return 0;
}

/*
 * Read the log from tail to head and process the log records found.
 * Handle the two cases where the tail and head are in the same cycle
 * and where the active portion of the log wraps around the end of
 * the physical log separately.  The pass parameter is passed through
 * to the routines called to process the data and is not looked at
 * here.
 */
STATIC int
xlog_do_recovery_pass(
        xlog_t                  *log,
        xfs_daddr_t             head_blk,
        xfs_daddr_t             tail_blk,
        int                     pass)
{
        xlog_rec_header_t       *rhead;
        xfs_daddr_t             blk_no;
        xfs_caddr_t             bufaddr, offset;
        xfs_buf_t               *hbp, *dbp;
        int                     error = 0, h_size;
        int                     bblks, split_bblks;
        int                     hblks, split_hblks, wrapped_hblks;
        xlog_recover_t          *rhash[XLOG_RHASH_SIZE];

        ASSERT(head_blk != tail_blk);

        /*
         * Read the header of the tail block and get the iclog buffer size from
         * h_size.  Use this to tell how many sectors make up the log header.
         */
        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
                /*
                 * When using variable length iclogs, read first sector of
                 * iclog header and extract the header size from it.  Get a
                 * new hbp that is the correct size.
                 */
                hbp = xlog_get_bp(log, 1);
                if (!hbp)
                        return ENOMEM;
                if ((error = xlog_bread(log, tail_blk, 1, hbp)))
                        goto bread_err1;
                offset = xlog_align(log, tail_blk, 1, hbp);
                rhead = (xlog_rec_header_t *)offset;
                error = xlog_valid_rec_header(log, rhead, tail_blk);
                if (error)
                        goto bread_err1;
                h_size = be32_to_cpu(rhead->h_size);
                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
                                hblks++;
                        xlog_put_bp(hbp);
                        hbp = xlog_get_bp(log, hblks);
                } else {
                        hblks = 1;
                }
        } else {
                ASSERT(log->l_sectbb_log == 0);
                hblks = 1;
                hbp = xlog_get_bp(log, 1);
                h_size = XLOG_BIG_RECORD_BSIZE;
        }

        if (!hbp)
                return ENOMEM;
        dbp = xlog_get_bp(log, BTOBB(h_size));
        if (!dbp) {
                xlog_put_bp(hbp);
                return ENOMEM;
        }

        memset(rhash, 0, sizeof(rhash));
        if (tail_blk <= head_blk) {
                for (blk_no = tail_blk; blk_no < head_blk; ) {
                        if ((error = xlog_bread(log, blk_no, hblks, hbp)))
                                goto bread_err2;
                        offset = xlog_align(log, blk_no, hblks, hbp);
                        rhead = (xlog_rec_header_t *)offset;
                        error = xlog_valid_rec_header(log, rhead, blk_no);
                        if (error)
                                goto bread_err2;

                        /* blocks in data section */
                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
                        error = xlog_bread(log, blk_no + hblks, bblks, dbp);
                        if (error)
                                goto bread_err2;
                        offset = xlog_align(log, blk_no + hblks, bblks, dbp);
                        xlog_unpack_data(rhead, offset, log);
                        if ((error = xlog_recover_process_data(log,
                                                rhash, rhead, offset, pass)))
                                goto bread_err2;
                        blk_no += bblks + hblks;
                }
        } else {
                /*
                 * Perform recovery around the end of the physical log.
                 * When the head is not on the same cycle number as the tail,
                 * we can't do a sequential recovery as above.
                 */
                blk_no = tail_blk;
                while (blk_no < log->l_logBBsize) {
                        /*
                         * Check for header wrapping around physical end-of-log
                         */
                        offset = NULL;
                        split_hblks = 0;
                        wrapped_hblks = 0;
                        if (blk_no + hblks <= log->l_logBBsize) {
                                /* Read header in one read */
                                error = xlog_bread(log, blk_no, hblks, hbp);
                                if (error)
                                        goto bread_err2;
                                offset = xlog_align(log, blk_no, hblks, hbp);
                        } else {
                                /* This LR is split across physical log end */
                                if (blk_no != log->l_logBBsize) {
                                        /* some data before physical log end */
                                        ASSERT(blk_no <= INT_MAX);
                                        split_hblks = log->l_logBBsize - (int)blk_no;
                                        ASSERT(split_hblks > 0);
                                        if ((error = xlog_bread(log, blk_no,
                                                        split_hblks, hbp)))
                                                goto bread_err2;
                                        offset = xlog_align(log, blk_no,
                                                        split_hblks, hbp);
                                }
                                /*
                                 * Note: this black magic still works with
                                 * large sector sizes (non-512) only because:
                                 * - we increased the buffer size originally
                                 *   by 1 sector giving us enough extra space
                                 *   for the second read;
                                 * - the log start is guaranteed to be sector
                                 *   aligned;
                                 * - we read the log end (LR header start)
                                 *   _first_, then the log start (LR header end)
                                 *   - order is important.
                                 */
                                wrapped_hblks = hblks - split_hblks;
                                bufaddr = XFS_BUF_PTR(hbp);
                                error = XFS_BUF_SET_PTR(hbp,
                                                bufaddr + BBTOB(split_hblks),
                                                BBTOB(hblks - split_hblks));
                                if (!error)
                                        error = xlog_bread(log, 0,
                                                        wrapped_hblks, hbp);
                                if (!error)
                                        error = XFS_BUF_SET_PTR(hbp, bufaddr,
                                                        BBTOB(hblks));
                                if (error)
                                        goto bread_err2;
                                if (!offset)
                                        offset = xlog_align(log, 0,
                                                        wrapped_hblks, hbp);
                        }
                        rhead = (xlog_rec_header_t *)offset;
                        error = xlog_valid_rec_header(log, rhead,
                                                split_hblks ? blk_no : 0);
                        if (error)
                                goto bread_err2;

                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
                        blk_no += hblks;

                        /* Read in data for log record */
                        if (blk_no + bblks <= log->l_logBBsize) {
                                error = xlog_bread(log, blk_no, bblks, dbp);
                                if (error)
                                        goto bread_err2;
                                offset = xlog_align(log, blk_no, bblks, dbp);
                        } else {
                                /* This log record is split across the
                                 * physical end of log */
                                offset = NULL;
                                split_bblks = 0;
                                if (blk_no != log->l_logBBsize) {
                                        /* some data is before the physical
                                         * end of log */
                                        ASSERT(!wrapped_hblks);
                                        ASSERT(blk_no <= INT_MAX);
                                        split_bblks =
                                                log->l_logBBsize - (int)blk_no;
                                        ASSERT(split_bblks > 0);
                                        if ((error = xlog_bread(log, blk_no,
                                                        split_bblks, dbp)))
                                                goto bread_err2;
                                        offset = xlog_align(log, blk_no,
                                                        split_bblks, dbp);
                                }
                                /*
                                 * Note: this black magic still works with
                                 * large sector sizes (non-512) only because:
                                 * - we increased the buffer size originally
                                 *   by 1 sector giving us enough extra space
                                 *   for the second read;
                                 * - the log start is guaranteed to be sector
                                 *   aligned;
                                 * - we read the log end (LR header start)
                                 *   _first_, then the log start (LR header end)
                                 *   - order is important.
                                 */
                                bufaddr = XFS_BUF_PTR(dbp);
                                error = XFS_BUF_SET_PTR(dbp,
                                                bufaddr + BBTOB(split_bblks),
                                                BBTOB(bblks - split_bblks));
                                if (!error)
                                        error = xlog_bread(log, wrapped_hblks,
                                                        bblks - split_bblks,
                                                        dbp);
                                if (!error)
                                        error = XFS_BUF_SET_PTR(dbp, bufaddr,
                                                        h_size);
                                if (error)
                                        goto bread_err2;
                                if (!offset)
                                        offset = xlog_align(log, wrapped_hblks,
                                                bblks - split_bblks, dbp);
                        }
                        xlog_unpack_data(rhead, offset, log);
                        if ((error = xlog_recover_process_data(log, rhash,
                                                        rhead, offset, pass)))
                                goto bread_err2;
                        blk_no += bblks;
                }

                ASSERT(blk_no >= log->l_logBBsize);
                blk_no -= log->l_logBBsize;

                /* read first part of physical log */
                while (blk_no < head_blk) {
                        if ((error = xlog_bread(log, blk_no, hblks, hbp)))
                                goto bread_err2;
                        offset = xlog_align(log, blk_no, hblks, hbp);
                        rhead = (xlog_rec_header_t *)offset;
                        error = xlog_valid_rec_header(log, rhead, blk_no);
                        if (error)
                                goto bread_err2;
                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
                        if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
                                goto bread_err2;
                        offset = xlog_align(log, blk_no+hblks, bblks, dbp);
                        xlog_unpack_data(rhead, offset, log);
                        if ((error = xlog_recover_process_data(log, rhash,
                                                        rhead, offset, pass)))
                                goto bread_err2;
                        blk_no += bblks + hblks;
                }
        }

 bread_err2:
        xlog_put_bp(dbp);
 bread_err1:
        xlog_put_bp(hbp);
        return error;
}

/*
 * Do the recovery of the log.  We actually do this in two phases.
 * The two passes are necessary in order to implement the function
 * of cancelling a record written into the log.  The first pass
 * determines those things which have been cancelled, and the
 * second pass replays log items normally except for those which
 * have been cancelled.  The handling of the replay and cancellations
 * takes place in the log item type specific routines.
 *
 * The table of items which have cancel records in the log is allocated
 * and freed at this level, since only here do we know when all of
 * the log recovery has been completed.
 */
STATIC int
xlog_do_log_recovery(
        xlog_t          *log,
        xfs_daddr_t     head_blk,
        xfs_daddr_t     tail_blk)
{
        int             error;

        ASSERT(head_blk != tail_blk);

        /*
         * First do a pass to find all of the cancelled buf log items.
         * Store them in the buf_cancel_table for use in the second pass.
         */
        log->l_buf_cancel_table =
                (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
                                                 sizeof(xfs_buf_cancel_t*),
                                                 KM_SLEEP);
        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
                                      XLOG_RECOVER_PASS1);
        if (error != 0) {
                kmem_free(log->l_buf_cancel_table);
                log->l_buf_cancel_table = NULL;
                return error;
        }
        /*
         * Then do a second pass to actually recover the items in the log.
         * When it is complete free the table of buf cancel items.
         */
        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
                                      XLOG_RECOVER_PASS2);
#ifdef DEBUG
        if (!error) {
                int     i;

                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
                        ASSERT(log->l_buf_cancel_table[i] == NULL);
        }
#endif  /* DEBUG */

        kmem_free(log->l_buf_cancel_table);
        log->l_buf_cancel_table = NULL;

        return error;
}

/*
 * Do the actual recovery
 */
STATIC int
xlog_do_recover(
        xlog_t          *log,
        xfs_daddr_t     head_blk,
        xfs_daddr_t     tail_blk)
{
        int             error;
        xfs_buf_t       *bp;
        xfs_sb_t        *sbp;

        /*
         * First replay the images in the log.
         */
        error = xlog_do_log_recovery(log, head_blk, tail_blk);
        if (error) {
                return error;
        }

        XFS_bflush(log->l_mp->m_ddev_targp);

        /*
         * If IO errors happened during recovery, bail out.
         */
        if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
                return (EIO);
        }

        /*
         * We now update the tail_lsn since much of the recovery has completed
         * and there may be space available to use.  If there were no extent
         * or iunlinks, we can free up the entire log and set the tail_lsn to
         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
         * lsn of the last known good LR on disk.  If there are extent frees
         * or iunlinks they will have some entries in the AIL; so we look at
         * the AIL to determine how to set the tail_lsn.
         */
        xlog_assign_tail_lsn(log->l_mp);

        /*
         * Now that we've finished replaying all buffer and inode
         * updates, re-read in the superblock.
         */
        bp = xfs_getsb(log->l_mp, 0);
        XFS_BUF_UNDONE(bp);
        ASSERT(!(XFS_BUF_ISWRITE(bp)));
        ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
        XFS_BUF_READ(bp);
        XFS_BUF_UNASYNC(bp);
        xfsbdstrat(log->l_mp, bp);
        error = xfs_iowait(bp);
        if (error) {
                xfs_ioerror_alert("xlog_do_recover",
                                  log->l_mp, bp, XFS_BUF_ADDR(bp));
                ASSERT(0);
                xfs_buf_relse(bp);
                return error;
        }

        /* Convert superblock from on-disk format */
        sbp = &log->l_mp->m_sb;
        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
        ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
        ASSERT(xfs_sb_good_version(sbp));
        xfs_buf_relse(bp);

        /* We've re-read the superblock so re-initialize per-cpu counters */
        xfs_icsb_reinit_counters(log->l_mp);

        xlog_recover_check_summary(log);

        /* Normal transactions can now occur */
        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
        return 0;
}

/*
 * Perform recovery and re-initialize some log variables in xlog_find_tail.
 *
 * Return error or zero.
 */
int
xlog_recover(
        xlog_t          *log)
{
        xfs_daddr_t     head_blk, tail_blk;
        int             error;

        /* find the tail of the log */
        if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
                return error;

        if (tail_blk != head_blk) {
                /* There used to be a comment here:
                 *
                 * disallow recovery on read-only mounts.  note -- mount
                 * checks for ENOSPC and turns it into an intelligent
                 * error message.
                 * ...but this is no longer true.  Now, unless you specify
                 * NORECOVERY (in which case this function would never be
                 * called), we just go ahead and recover.  We do this all
                 * under the vfs layer, so we can get away with it unless
                 * the device itself is read-only, in which case we fail.
                 */
                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
                        return error;
                }

                cmn_err(CE_NOTE,
                        "Starting XFS recovery on filesystem: %s (logdev: %s)",
                        log->l_mp->m_fsname, log->l_mp->m_logname ?
                        log->l_mp->m_logname : "internal");

                error = xlog_do_recover(log, head_blk, tail_blk);
                log->l_flags |= XLOG_RECOVERY_NEEDED;
        }
        return error;
}

/*
 * In the first part of recovery we replay inodes and buffers and build
 * up the list of extent free items which need to be processed.  Here
 * we process the extent free items and clean up the on disk unlinked
 * inode lists.  This is separated from the first part of recovery so
 * that the root and real-time bitmap inodes can be read in from disk in
 * between the two stages.  This is necessary so that we can free space
 * in the real-time portion of the file system.
 */
int
xlog_recover_finish(
        xlog_t          *log)
{
        /*
         * Now we're ready to do the transactions needed for the
         * rest of recovery.  Start with completing all the extent
         * free intent records and then process the unlinked inode
         * lists.  At this point, we essentially run in normal mode
         * except that we're still performing recovery actions
         * rather than accepting new requests.
         */
        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
                int     error;
                error = xlog_recover_process_efis(log);
                if (error) {
                        cmn_err(CE_ALERT,
                                "Failed to recover EFIs on filesystem: %s",
                                log->l_mp->m_fsname);
                        return error;
                }
                /*
                 * Sync the log to get all the EFIs out of the AIL.
                 * This isn't absolutely necessary, but it helps in
                 * case the unlink transactions would have problems
                 * pushing the EFIs out of the way.
                 */
                xfs_log_force(log->l_mp, (xfs_lsn_t)0,
                              (XFS_LOG_FORCE | XFS_LOG_SYNC));

                xlog_recover_process_iunlinks(log);

                xlog_recover_check_summary(log);

                cmn_err(CE_NOTE,
                        "Ending XFS recovery on filesystem: %s (logdev: %s)",
                        log->l_mp->m_fsname, log->l_mp->m_logname ?
                        log->l_mp->m_logname : "internal");
                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
        } else {
                cmn_err(CE_DEBUG,
                        "!Ending clean XFS mount for filesystem: %s\n",
                        log->l_mp->m_fsname);
        }
        return 0;
}


#if defined(DEBUG)
/*
 * Read all of the agf and agi counters and check that they
 * are consistent with the superblock counters.
 */
void
xlog_recover_check_summary(
        xlog_t          *log)
{
        xfs_mount_t     *mp;
        xfs_agf_t       *agfp;
        xfs_agi_t       *agip;
        xfs_buf_t       *agfbp;
        xfs_buf_t       *agibp;
        xfs_daddr_t     agfdaddr;
        xfs_daddr_t     agidaddr;
        xfs_buf_t       *sbbp;
#ifdef XFS_LOUD_RECOVERY
        xfs_sb_t        *sbp;
#endif
        xfs_agnumber_t  agno;
        __uint64_t      freeblks;
        __uint64_t      itotal;
        __uint64_t      ifree;

        mp = log->l_mp;

        freeblks = 0LL;
        itotal = 0LL;
        ifree = 0LL;
        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
                agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
                agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
                                XFS_FSS_TO_BB(mp, 1), 0);
                if (XFS_BUF_ISERROR(agfbp)) {
                        xfs_ioerror_alert("xlog_recover_check_summary(agf)",
                                                mp, agfbp, agfdaddr);
                }
                agfp = XFS_BUF_TO_AGF(agfbp);
                ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
                ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
                ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);

                freeblks += be32_to_cpu(agfp->agf_freeblks) +
                            be32_to_cpu(agfp->agf_flcount);
                xfs_buf_relse(agfbp);

                agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
                agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
                                XFS_FSS_TO_BB(mp, 1), 0);
                if (XFS_BUF_ISERROR(agibp)) {
                        xfs_ioerror_alert("xlog_recover_check_summary(agi)",
                                          mp, agibp, agidaddr);
                }
                agip = XFS_BUF_TO_AGI(agibp);
                ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
                ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
                ASSERT(be32_to_cpu(agip->agi_seqno) == agno);

                itotal += be32_to_cpu(agip->agi_count);
                ifree += be32_to_cpu(agip->agi_freecount);
                xfs_buf_relse(agibp);
        }

        sbbp = xfs_getsb(mp, 0);
#ifdef XFS_LOUD_RECOVERY
        sbp = &mp->m_sb;
        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
        cmn_err(CE_NOTE,
                "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
                sbp->sb_icount, itotal);
        cmn_err(CE_NOTE,
                "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
                sbp->sb_ifree, ifree);
        cmn_err(CE_NOTE,
                "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
                sbp->sb_fdblocks, freeblks);
#if 0
        /*
         * This is turned off until I account for the allocation
         * btree blocks which live in free space.
         */
        ASSERT(sbp->sb_icount == itotal);
        ASSERT(sbp->sb_ifree == ifree);
        ASSERT(sbp->sb_fdblocks == freeblks);
#endif
#endif
        xfs_buf_relse(sbbp);
}
#endif /* DEBUG */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading