[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/dlm/lockspace.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. dlm_control_store
  2. dlm_event_store
  3. dlm_id_show
  4. dlm_id_store
  5. dlm_recover_status_show
  6. dlm_recover_nodeid_show
  7. dlm_attr_show
  8. dlm_attr_store
  9. lockspace_kobj_release
  10. do_uevent
  11. dlm_lockspace_init
  12. dlm_lockspace_exit
  13. find_ls_to_scan
  14. dlm_scand
  15. dlm_scand_start
  16. dlm_scand_stop
  17. dlm_find_lockspace_global
  18. dlm_find_lockspace_local
  19. dlm_find_lockspace_device
  20. dlm_put_lockspace
  21. remove_lockspace
  22. threads_start
  23. threads_stop
  24. new_lockspace
  25. dlm_new_lockspace
  26. lockspace_busy
  27. release_lockspace
  28. dlm_release_lockspace
  29. dlm_stop_lockspaces

/******************************************************************************
*******************************************************************************
**
**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
**  Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
**
**  This copyrighted material is made available to anyone wishing to use,
**  modify, copy, or redistribute it subject to the terms and conditions
**  of the GNU General Public License v.2.
**
*******************************************************************************
******************************************************************************/

#include "dlm_internal.h"
#include "lockspace.h"
#include "member.h"
#include "recoverd.h"
#include "ast.h"
#include "dir.h"
#include "lowcomms.h"
#include "config.h"
#include "memory.h"
#include "lock.h"
#include "recover.h"
#include "requestqueue.h"
#include "user.h"

static int                      ls_count;
static struct mutex             ls_lock;
static struct list_head         lslist;
static spinlock_t               lslist_lock;
static struct task_struct *     scand_task;


static ssize_t dlm_control_store(struct dlm_ls *ls, const char *buf, size_t len)
{
        ssize_t ret = len;
        int n = simple_strtol(buf, NULL, 0);

        ls = dlm_find_lockspace_local(ls->ls_local_handle);
        if (!ls)
                return -EINVAL;

        switch (n) {
        case 0:
                dlm_ls_stop(ls);
                break;
        case 1:
                dlm_ls_start(ls);
                break;
        default:
                ret = -EINVAL;
        }
        dlm_put_lockspace(ls);
        return ret;
}

static ssize_t dlm_event_store(struct dlm_ls *ls, const char *buf, size_t len)
{
        ls->ls_uevent_result = simple_strtol(buf, NULL, 0);
        set_bit(LSFL_UEVENT_WAIT, &ls->ls_flags);
        wake_up(&ls->ls_uevent_wait);
        return len;
}

static ssize_t dlm_id_show(struct dlm_ls *ls, char *buf)
{
        return snprintf(buf, PAGE_SIZE, "%u\n", ls->ls_global_id);
}

static ssize_t dlm_id_store(struct dlm_ls *ls, const char *buf, size_t len)
{
        ls->ls_global_id = simple_strtoul(buf, NULL, 0);
        return len;
}

static ssize_t dlm_recover_status_show(struct dlm_ls *ls, char *buf)
{
        uint32_t status = dlm_recover_status(ls);
        return snprintf(buf, PAGE_SIZE, "%x\n", status);
}

static ssize_t dlm_recover_nodeid_show(struct dlm_ls *ls, char *buf)
{
        return snprintf(buf, PAGE_SIZE, "%d\n", ls->ls_recover_nodeid);
}

struct dlm_attr {
        struct attribute attr;
        ssize_t (*show)(struct dlm_ls *, char *);
        ssize_t (*store)(struct dlm_ls *, const char *, size_t);
};

static struct dlm_attr dlm_attr_control = {
        .attr  = {.name = "control", .mode = S_IWUSR},
        .store = dlm_control_store
};

static struct dlm_attr dlm_attr_event = {
        .attr  = {.name = "event_done", .mode = S_IWUSR},
        .store = dlm_event_store
};

static struct dlm_attr dlm_attr_id = {
        .attr  = {.name = "id", .mode = S_IRUGO | S_IWUSR},
        .show  = dlm_id_show,
        .store = dlm_id_store
};

static struct dlm_attr dlm_attr_recover_status = {
        .attr  = {.name = "recover_status", .mode = S_IRUGO},
        .show  = dlm_recover_status_show
};

static struct dlm_attr dlm_attr_recover_nodeid = {
        .attr  = {.name = "recover_nodeid", .mode = S_IRUGO},
        .show  = dlm_recover_nodeid_show
};

static struct attribute *dlm_attrs[] = {
        &dlm_attr_control.attr,
        &dlm_attr_event.attr,
        &dlm_attr_id.attr,
        &dlm_attr_recover_status.attr,
        &dlm_attr_recover_nodeid.attr,
        NULL,
};

static ssize_t dlm_attr_show(struct kobject *kobj, struct attribute *attr,
                             char *buf)
{
        struct dlm_ls *ls  = container_of(kobj, struct dlm_ls, ls_kobj);
        struct dlm_attr *a = container_of(attr, struct dlm_attr, attr);
        return a->show ? a->show(ls, buf) : 0;
}

static ssize_t dlm_attr_store(struct kobject *kobj, struct attribute *attr,
                              const char *buf, size_t len)
{
        struct dlm_ls *ls  = container_of(kobj, struct dlm_ls, ls_kobj);
        struct dlm_attr *a = container_of(attr, struct dlm_attr, attr);
        return a->store ? a->store(ls, buf, len) : len;
}

static void lockspace_kobj_release(struct kobject *k)
{
        struct dlm_ls *ls  = container_of(k, struct dlm_ls, ls_kobj);
        kfree(ls);
}

static struct sysfs_ops dlm_attr_ops = {
        .show  = dlm_attr_show,
        .store = dlm_attr_store,
};

static struct kobj_type dlm_ktype = {
        .default_attrs = dlm_attrs,
        .sysfs_ops     = &dlm_attr_ops,
        .release       = lockspace_kobj_release,
};

static struct kset *dlm_kset;

static int do_uevent(struct dlm_ls *ls, int in)
{
        int error;

        if (in)
                kobject_uevent(&ls->ls_kobj, KOBJ_ONLINE);
        else
                kobject_uevent(&ls->ls_kobj, KOBJ_OFFLINE);

        log_debug(ls, "%s the lockspace group...", in ? "joining" : "leaving");

        /* dlm_controld will see the uevent, do the necessary group management
           and then write to sysfs to wake us */

        error = wait_event_interruptible(ls->ls_uevent_wait,
                        test_and_clear_bit(LSFL_UEVENT_WAIT, &ls->ls_flags));

        log_debug(ls, "group event done %d %d", error, ls->ls_uevent_result);

        if (error)
                goto out;

        error = ls->ls_uevent_result;
 out:
        if (error)
                log_error(ls, "group %s failed %d %d", in ? "join" : "leave",
                          error, ls->ls_uevent_result);
        return error;
}


int __init dlm_lockspace_init(void)
{
        ls_count = 0;
        mutex_init(&ls_lock);
        INIT_LIST_HEAD(&lslist);
        spin_lock_init(&lslist_lock);

        dlm_kset = kset_create_and_add("dlm", NULL, kernel_kobj);
        if (!dlm_kset) {
                printk(KERN_WARNING "%s: can not create kset\n", __func__);
                return -ENOMEM;
        }
        return 0;
}

void dlm_lockspace_exit(void)
{
        kset_unregister(dlm_kset);
}

static struct dlm_ls *find_ls_to_scan(void)
{
        struct dlm_ls *ls;

        spin_lock(&lslist_lock);
        list_for_each_entry(ls, &lslist, ls_list) {
                if (time_after_eq(jiffies, ls->ls_scan_time +
                                            dlm_config.ci_scan_secs * HZ)) {
                        spin_unlock(&lslist_lock);
                        return ls;
                }
        }
        spin_unlock(&lslist_lock);
        return NULL;
}

static int dlm_scand(void *data)
{
        struct dlm_ls *ls;
        int timeout_jiffies = dlm_config.ci_scan_secs * HZ;

        while (!kthread_should_stop()) {
                ls = find_ls_to_scan();
                if (ls) {
                        if (dlm_lock_recovery_try(ls)) {
                                ls->ls_scan_time = jiffies;
                                dlm_scan_rsbs(ls);
                                dlm_scan_timeout(ls);
                                dlm_unlock_recovery(ls);
                        } else {
                                ls->ls_scan_time += HZ;
                        }
                } else {
                        schedule_timeout_interruptible(timeout_jiffies);
                }
        }
        return 0;
}

static int dlm_scand_start(void)
{
        struct task_struct *p;
        int error = 0;

        p = kthread_run(dlm_scand, NULL, "dlm_scand");
        if (IS_ERR(p))
                error = PTR_ERR(p);
        else
                scand_task = p;
        return error;
}

static void dlm_scand_stop(void)
{
        kthread_stop(scand_task);
}

struct dlm_ls *dlm_find_lockspace_global(uint32_t id)
{
        struct dlm_ls *ls;

        spin_lock(&lslist_lock);

        list_for_each_entry(ls, &lslist, ls_list) {
                if (ls->ls_global_id == id) {
                        ls->ls_count++;
                        goto out;
                }
        }
        ls = NULL;
 out:
        spin_unlock(&lslist_lock);
        return ls;
}

struct dlm_ls *dlm_find_lockspace_local(dlm_lockspace_t *lockspace)
{
        struct dlm_ls *ls;

        spin_lock(&lslist_lock);
        list_for_each_entry(ls, &lslist, ls_list) {
                if (ls->ls_local_handle == lockspace) {
                        ls->ls_count++;
                        goto out;
                }
        }
        ls = NULL;
 out:
        spin_unlock(&lslist_lock);
        return ls;
}

struct dlm_ls *dlm_find_lockspace_device(int minor)
{
        struct dlm_ls *ls;

        spin_lock(&lslist_lock);
        list_for_each_entry(ls, &lslist, ls_list) {
                if (ls->ls_device.minor == minor) {
                        ls->ls_count++;
                        goto out;
                }
        }
        ls = NULL;
 out:
        spin_unlock(&lslist_lock);
        return ls;
}

void dlm_put_lockspace(struct dlm_ls *ls)
{
        spin_lock(&lslist_lock);
        ls->ls_count--;
        spin_unlock(&lslist_lock);
}

static void remove_lockspace(struct dlm_ls *ls)
{
        for (;;) {
                spin_lock(&lslist_lock);
                if (ls->ls_count == 0) {
                        WARN_ON(ls->ls_create_count != 0);
                        list_del(&ls->ls_list);
                        spin_unlock(&lslist_lock);
                        return;
                }
                spin_unlock(&lslist_lock);
                ssleep(1);
        }
}

static int threads_start(void)
{
        int error;

        /* Thread which process lock requests for all lockspace's */
        error = dlm_astd_start();
        if (error) {
                log_print("cannot start dlm_astd thread %d", error);
                goto fail;
        }

        error = dlm_scand_start();
        if (error) {
                log_print("cannot start dlm_scand thread %d", error);
                goto astd_fail;
        }

        /* Thread for sending/receiving messages for all lockspace's */
        error = dlm_lowcomms_start();
        if (error) {
                log_print("cannot start dlm lowcomms %d", error);
                goto scand_fail;
        }

        return 0;

 scand_fail:
        dlm_scand_stop();
 astd_fail:
        dlm_astd_stop();
 fail:
        return error;
}

static void threads_stop(void)
{
        dlm_scand_stop();
        dlm_lowcomms_stop();
        dlm_astd_stop();
}

static int new_lockspace(char *name, int namelen, void **lockspace,
                         uint32_t flags, int lvblen)
{
        struct dlm_ls *ls;
        int i, size, error;
        int do_unreg = 0;

        if (namelen > DLM_LOCKSPACE_LEN)
                return -EINVAL;

        if (!lvblen || (lvblen % 8))
                return -EINVAL;

        if (!try_module_get(THIS_MODULE))
                return -EINVAL;

        if (!dlm_user_daemon_available()) {
                module_put(THIS_MODULE);
                return -EUNATCH;
        }

        error = 0;

        spin_lock(&lslist_lock);
        list_for_each_entry(ls, &lslist, ls_list) {
                WARN_ON(ls->ls_create_count <= 0);
                if (ls->ls_namelen != namelen)
                        continue;
                if (memcmp(ls->ls_name, name, namelen))
                        continue;
                if (flags & DLM_LSFL_NEWEXCL) {
                        error = -EEXIST;
                        break;
                }
                ls->ls_create_count++;
                module_put(THIS_MODULE);
                error = 1; /* not an error, return 0 */
                break;
        }
        spin_unlock(&lslist_lock);

        if (error < 0)
                goto out;
        if (error)
                goto ret_zero;

        error = -ENOMEM;

        ls = kzalloc(sizeof(struct dlm_ls) + namelen, GFP_KERNEL);
        if (!ls)
                goto out;
        memcpy(ls->ls_name, name, namelen);
        ls->ls_namelen = namelen;
        ls->ls_lvblen = lvblen;
        ls->ls_count = 0;
        ls->ls_flags = 0;
        ls->ls_scan_time = jiffies;

        if (flags & DLM_LSFL_TIMEWARN)
                set_bit(LSFL_TIMEWARN, &ls->ls_flags);

        if (flags & DLM_LSFL_FS)
                ls->ls_allocation = GFP_NOFS;
        else
                ls->ls_allocation = GFP_KERNEL;

        /* ls_exflags are forced to match among nodes, and we don't
           need to require all nodes to have some flags set */
        ls->ls_exflags = (flags & ~(DLM_LSFL_TIMEWARN | DLM_LSFL_FS |
                                    DLM_LSFL_NEWEXCL));

        size = dlm_config.ci_rsbtbl_size;
        ls->ls_rsbtbl_size = size;

        ls->ls_rsbtbl = kmalloc(sizeof(struct dlm_rsbtable) * size, GFP_KERNEL);
        if (!ls->ls_rsbtbl)
                goto out_lsfree;
        for (i = 0; i < size; i++) {
                INIT_LIST_HEAD(&ls->ls_rsbtbl[i].list);
                INIT_LIST_HEAD(&ls->ls_rsbtbl[i].toss);
                rwlock_init(&ls->ls_rsbtbl[i].lock);
        }

        size = dlm_config.ci_lkbtbl_size;
        ls->ls_lkbtbl_size = size;

        ls->ls_lkbtbl = kmalloc(sizeof(struct dlm_lkbtable) * size, GFP_KERNEL);
        if (!ls->ls_lkbtbl)
                goto out_rsbfree;
        for (i = 0; i < size; i++) {
                INIT_LIST_HEAD(&ls->ls_lkbtbl[i].list);
                rwlock_init(&ls->ls_lkbtbl[i].lock);
                ls->ls_lkbtbl[i].counter = 1;
        }

        size = dlm_config.ci_dirtbl_size;
        ls->ls_dirtbl_size = size;

        ls->ls_dirtbl = kmalloc(sizeof(struct dlm_dirtable) * size, GFP_KERNEL);
        if (!ls->ls_dirtbl)
                goto out_lkbfree;
        for (i = 0; i < size; i++) {
                INIT_LIST_HEAD(&ls->ls_dirtbl[i].list);
                rwlock_init(&ls->ls_dirtbl[i].lock);
        }

        INIT_LIST_HEAD(&ls->ls_waiters);
        mutex_init(&ls->ls_waiters_mutex);
        INIT_LIST_HEAD(&ls->ls_orphans);
        mutex_init(&ls->ls_orphans_mutex);
        INIT_LIST_HEAD(&ls->ls_timeout);
        mutex_init(&ls->ls_timeout_mutex);

        INIT_LIST_HEAD(&ls->ls_nodes);
        INIT_LIST_HEAD(&ls->ls_nodes_gone);
        ls->ls_num_nodes = 0;
        ls->ls_low_nodeid = 0;
        ls->ls_total_weight = 0;
        ls->ls_node_array = NULL;

        memset(&ls->ls_stub_rsb, 0, sizeof(struct dlm_rsb));
        ls->ls_stub_rsb.res_ls = ls;

        ls->ls_debug_rsb_dentry = NULL;
        ls->ls_debug_waiters_dentry = NULL;

        init_waitqueue_head(&ls->ls_uevent_wait);
        ls->ls_uevent_result = 0;
        init_completion(&ls->ls_members_done);
        ls->ls_members_result = -1;

        ls->ls_recoverd_task = NULL;
        mutex_init(&ls->ls_recoverd_active);
        spin_lock_init(&ls->ls_recover_lock);
        spin_lock_init(&ls->ls_rcom_spin);
        get_random_bytes(&ls->ls_rcom_seq, sizeof(uint64_t));
        ls->ls_recover_status = 0;
        ls->ls_recover_seq = 0;
        ls->ls_recover_args = NULL;
        init_rwsem(&ls->ls_in_recovery);
        init_rwsem(&ls->ls_recv_active);
        INIT_LIST_HEAD(&ls->ls_requestqueue);
        mutex_init(&ls->ls_requestqueue_mutex);
        mutex_init(&ls->ls_clear_proc_locks);

        ls->ls_recover_buf = kmalloc(dlm_config.ci_buffer_size, GFP_KERNEL);
        if (!ls->ls_recover_buf)
                goto out_dirfree;

        INIT_LIST_HEAD(&ls->ls_recover_list);
        spin_lock_init(&ls->ls_recover_list_lock);
        ls->ls_recover_list_count = 0;
        ls->ls_local_handle = ls;
        init_waitqueue_head(&ls->ls_wait_general);
        INIT_LIST_HEAD(&ls->ls_root_list);
        init_rwsem(&ls->ls_root_sem);

        down_write(&ls->ls_in_recovery);

        spin_lock(&lslist_lock);
        ls->ls_create_count = 1;
        list_add(&ls->ls_list, &lslist);
        spin_unlock(&lslist_lock);

        /* needs to find ls in lslist */
        error = dlm_recoverd_start(ls);
        if (error) {
                log_error(ls, "can't start dlm_recoverd %d", error);
                goto out_delist;
        }

        ls->ls_kobj.kset = dlm_kset;
        error = kobject_init_and_add(&ls->ls_kobj, &dlm_ktype, NULL,
                                     "%s", ls->ls_name);
        if (error)
                goto out_stop;
        kobject_uevent(&ls->ls_kobj, KOBJ_ADD);

        /* let kobject handle freeing of ls if there's an error */
        do_unreg = 1;

        /* This uevent triggers dlm_controld in userspace to add us to the
           group of nodes that are members of this lockspace (managed by the
           cluster infrastructure.)  Once it's done that, it tells us who the
           current lockspace members are (via configfs) and then tells the
           lockspace to start running (via sysfs) in dlm_ls_start(). */

        error = do_uevent(ls, 1);
        if (error)
                goto out_stop;

        wait_for_completion(&ls->ls_members_done);
        error = ls->ls_members_result;
        if (error)
                goto out_members;

        dlm_create_debug_file(ls);

        log_debug(ls, "join complete");
 ret_zero:
        *lockspace = ls;
        return 0;

 out_members:
        do_uevent(ls, 0);
        dlm_clear_members(ls);
        kfree(ls->ls_node_array);
 out_stop:
        dlm_recoverd_stop(ls);
 out_delist:
        spin_lock(&lslist_lock);
        list_del(&ls->ls_list);
        spin_unlock(&lslist_lock);
        kfree(ls->ls_recover_buf);
 out_dirfree:
        kfree(ls->ls_dirtbl);
 out_lkbfree:
        kfree(ls->ls_lkbtbl);
 out_rsbfree:
        kfree(ls->ls_rsbtbl);
 out_lsfree:
        if (do_unreg)
                kobject_put(&ls->ls_kobj);
        else
                kfree(ls);
 out:
        module_put(THIS_MODULE);
        return error;
}

int dlm_new_lockspace(char *name, int namelen, void **lockspace,
                      uint32_t flags, int lvblen)
{
        int error = 0;

        mutex_lock(&ls_lock);
        if (!ls_count)
                error = threads_start();
        if (error)
                goto out;

        error = new_lockspace(name, namelen, lockspace, flags, lvblen);
        if (!error)
                ls_count++;
        else if (!ls_count)
                threads_stop();
 out:
        mutex_unlock(&ls_lock);
        return error;
}

/* Return 1 if the lockspace still has active remote locks,
 *        2 if the lockspace still has active local locks.
 */
static int lockspace_busy(struct dlm_ls *ls)
{
        int i, lkb_found = 0;
        struct dlm_lkb *lkb;

        /* NOTE: We check the lockidtbl here rather than the resource table.
           This is because there may be LKBs queued as ASTs that have been
           unlinked from their RSBs and are pending deletion once the AST has
           been delivered */

        for (i = 0; i < ls->ls_lkbtbl_size; i++) {
                read_lock(&ls->ls_lkbtbl[i].lock);
                if (!list_empty(&ls->ls_lkbtbl[i].list)) {
                        lkb_found = 1;
                        list_for_each_entry(lkb, &ls->ls_lkbtbl[i].list,
                                            lkb_idtbl_list) {
                                if (!lkb->lkb_nodeid) {
                                        read_unlock(&ls->ls_lkbtbl[i].lock);
                                        return 2;
                                }
                        }
                }
                read_unlock(&ls->ls_lkbtbl[i].lock);
        }
        return lkb_found;
}

static int release_lockspace(struct dlm_ls *ls, int force)
{
        struct dlm_lkb *lkb;
        struct dlm_rsb *rsb;
        struct list_head *head;
        int i, busy, rv;

        busy = lockspace_busy(ls);

        spin_lock(&lslist_lock);
        if (ls->ls_create_count == 1) {
                if (busy > force)
                        rv = -EBUSY;
                else {
                        /* remove_lockspace takes ls off lslist */
                        ls->ls_create_count = 0;
                        rv = 0;
                }
        } else if (ls->ls_create_count > 1) {
                rv = --ls->ls_create_count;
        } else {
                rv = -EINVAL;
        }
        spin_unlock(&lslist_lock);

        if (rv) {
                log_debug(ls, "release_lockspace no remove %d", rv);
                return rv;
        }

        dlm_device_deregister(ls);

        if (force < 3 && dlm_user_daemon_available())
                do_uevent(ls, 0);

        dlm_recoverd_stop(ls);

        remove_lockspace(ls);

        dlm_delete_debug_file(ls);

        dlm_astd_suspend();

        kfree(ls->ls_recover_buf);

        /*
         * Free direntry structs.
         */

        dlm_dir_clear(ls);
        kfree(ls->ls_dirtbl);

        /*
         * Free all lkb's on lkbtbl[] lists.
         */

        for (i = 0; i < ls->ls_lkbtbl_size; i++) {
                head = &ls->ls_lkbtbl[i].list;
                while (!list_empty(head)) {
                        lkb = list_entry(head->next, struct dlm_lkb,
                                         lkb_idtbl_list);

                        list_del(&lkb->lkb_idtbl_list);

                        dlm_del_ast(lkb);

                        if (lkb->lkb_lvbptr && lkb->lkb_flags & DLM_IFL_MSTCPY)
                                dlm_free_lvb(lkb->lkb_lvbptr);

                        dlm_free_lkb(lkb);
                }
        }
        dlm_astd_resume();

        kfree(ls->ls_lkbtbl);

        /*
         * Free all rsb's on rsbtbl[] lists
         */

        for (i = 0; i < ls->ls_rsbtbl_size; i++) {
                head = &ls->ls_rsbtbl[i].list;
                while (!list_empty(head)) {
                        rsb = list_entry(head->next, struct dlm_rsb,
                                         res_hashchain);

                        list_del(&rsb->res_hashchain);
                        dlm_free_rsb(rsb);
                }

                head = &ls->ls_rsbtbl[i].toss;
                while (!list_empty(head)) {
                        rsb = list_entry(head->next, struct dlm_rsb,
                                         res_hashchain);
                        list_del(&rsb->res_hashchain);
                        dlm_free_rsb(rsb);
                }
        }

        kfree(ls->ls_rsbtbl);

        /*
         * Free structures on any other lists
         */

        dlm_purge_requestqueue(ls);
        kfree(ls->ls_recover_args);
        dlm_clear_free_entries(ls);
        dlm_clear_members(ls);
        dlm_clear_members_gone(ls);
        kfree(ls->ls_node_array);
        log_debug(ls, "release_lockspace final free");
        kobject_put(&ls->ls_kobj);
        /* The ls structure will be freed when the kobject is done with */

        module_put(THIS_MODULE);
        return 0;
}

/*
 * Called when a system has released all its locks and is not going to use the
 * lockspace any longer.  We free everything we're managing for this lockspace.
 * Remaining nodes will go through the recovery process as if we'd died.  The
 * lockspace must continue to function as usual, participating in recoveries,
 * until this returns.
 *
 * Force has 4 possible values:
 * 0 - don't destroy locksapce if it has any LKBs
 * 1 - destroy lockspace if it has remote LKBs but not if it has local LKBs
 * 2 - destroy lockspace regardless of LKBs
 * 3 - destroy lockspace as part of a forced shutdown
 */

int dlm_release_lockspace(void *lockspace, int force)
{
        struct dlm_ls *ls;
        int error;

        ls = dlm_find_lockspace_local(lockspace);
        if (!ls)
                return -EINVAL;
        dlm_put_lockspace(ls);

        mutex_lock(&ls_lock);
        error = release_lockspace(ls, force);
        if (!error)
                ls_count--;
        else if (!ls_count)
                threads_stop();
        mutex_unlock(&ls_lock);

        return error;
}

void dlm_stop_lockspaces(void)
{
        struct dlm_ls *ls;

 restart:
        spin_lock(&lslist_lock);
        list_for_each_entry(ls, &lslist, ls_list) {
                if (!test_bit(LSFL_RUNNING, &ls->ls_flags))
                        continue;
                spin_unlock(&lslist_lock);
                log_error(ls, "no userland control daemon, stopping lockspace");
                dlm_ls_stop(ls);
                goto restart;
        }
        spin_unlock(&lslist_lock);
}


/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading