[funini.com] -> [kei@sodan] -> Kernel Reading

root/kernel/power/process.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. freezeable
  2. frozen_process
  3. refrigerator
  4. fake_signal_wake_up
  5. should_send_signal
  6. freeze_task
  7. cancel_freezing
  8. try_to_freeze_tasks
  9. freeze_processes
  10. thaw_tasks
  11. thaw_processes

/*
 * drivers/power/process.c - Functions for starting/stopping processes on 
 *                           suspend transitions.
 *
 * Originally from swsusp.
 */


#undef DEBUG

#include <linux/interrupt.h>
#include <linux/suspend.h>
#include <linux/module.h>
#include <linux/syscalls.h>
#include <linux/freezer.h>

/* 
 * Timeout for stopping processes
 */
#define TIMEOUT (20 * HZ)

static inline int freezeable(struct task_struct * p)
{
        if ((p == current) ||
            (p->flags & PF_NOFREEZE) ||
            (p->exit_state != 0))
                return 0;
        return 1;
}

/*
 * freezing is complete, mark current process as frozen
 */
static inline void frozen_process(void)
{
        if (!unlikely(current->flags & PF_NOFREEZE)) {
                current->flags |= PF_FROZEN;
                wmb();
        }
        clear_freeze_flag(current);
}

/* Refrigerator is place where frozen processes are stored :-). */
void refrigerator(void)
{
        /* Hmm, should we be allowed to suspend when there are realtime
           processes around? */
        long save;

        task_lock(current);
        if (freezing(current)) {
                frozen_process();
                task_unlock(current);
        } else {
                task_unlock(current);
                return;
        }
        save = current->state;
        pr_debug("%s entered refrigerator\n", current->comm);

        spin_lock_irq(&current->sighand->siglock);
        recalc_sigpending(); /* We sent fake signal, clean it up */
        spin_unlock_irq(&current->sighand->siglock);

        for (;;) {
                set_current_state(TASK_UNINTERRUPTIBLE);
                if (!frozen(current))
                        break;
                schedule();
        }
        pr_debug("%s left refrigerator\n", current->comm);
        __set_current_state(save);
}

static void fake_signal_wake_up(struct task_struct *p)
{
        unsigned long flags;

        spin_lock_irqsave(&p->sighand->siglock, flags);
        signal_wake_up(p, 0);
        spin_unlock_irqrestore(&p->sighand->siglock, flags);
}

static inline bool should_send_signal(struct task_struct *p)
{
        return !(p->flags & PF_FREEZER_NOSIG);
}

/**
 *      freeze_task - send a freeze request to given task
 *      @p: task to send the request to
 *      @sig_only: if set, the request will only be sent if the task has the
 *              PF_FREEZER_NOSIG flag unset
 *      Return value: 'false', if @sig_only is set and the task has
 *              PF_FREEZER_NOSIG set or the task is frozen, 'true', otherwise
 *
 *      The freeze request is sent by setting the tasks's TIF_FREEZE flag and
 *      either sending a fake signal to it or waking it up, depending on whether
 *      or not it has PF_FREEZER_NOSIG set.  If @sig_only is set and the task
 *      has PF_FREEZER_NOSIG set (ie. it is a typical kernel thread), its
 *      TIF_FREEZE flag will not be set.
 */
static bool freeze_task(struct task_struct *p, bool sig_only)
{
        /*
         * We first check if the task is freezing and next if it has already
         * been frozen to avoid the race with frozen_process() which first marks
         * the task as frozen and next clears its TIF_FREEZE.
         */
        if (!freezing(p)) {
                rmb();
                if (frozen(p))
                        return false;

                if (!sig_only || should_send_signal(p))
                        set_freeze_flag(p);
                else
                        return false;
        }

        if (should_send_signal(p)) {
                if (!signal_pending(p))
                        fake_signal_wake_up(p);
        } else if (sig_only) {
                return false;
        } else {
                wake_up_state(p, TASK_INTERRUPTIBLE);
        }

        return true;
}

static void cancel_freezing(struct task_struct *p)
{
        unsigned long flags;

        if (freezing(p)) {
                pr_debug("  clean up: %s\n", p->comm);
                clear_freeze_flag(p);
                spin_lock_irqsave(&p->sighand->siglock, flags);
                recalc_sigpending_and_wake(p);
                spin_unlock_irqrestore(&p->sighand->siglock, flags);
        }
}

static int try_to_freeze_tasks(bool sig_only)
{
        struct task_struct *g, *p;
        unsigned long end_time;
        unsigned int todo;
        struct timeval start, end;
        u64 elapsed_csecs64;
        unsigned int elapsed_csecs;

        do_gettimeofday(&start);

        end_time = jiffies + TIMEOUT;
        do {
                todo = 0;
                read_lock(&tasklist_lock);
                do_each_thread(g, p) {
                        if (frozen(p) || !freezeable(p))
                                continue;

                        if (!freeze_task(p, sig_only))
                                continue;

                        /*
                         * Now that we've done set_freeze_flag, don't
                         * perturb a task in TASK_STOPPED or TASK_TRACED.
                         * It is "frozen enough".  If the task does wake
                         * up, it will immediately call try_to_freeze.
                         */
                        if (!task_is_stopped_or_traced(p) &&
                            !freezer_should_skip(p))
                                todo++;
                } while_each_thread(g, p);
                read_unlock(&tasklist_lock);
                yield();                        /* Yield is okay here */
                if (time_after(jiffies, end_time))
                        break;
        } while (todo);

        do_gettimeofday(&end);
        elapsed_csecs64 = timeval_to_ns(&end) - timeval_to_ns(&start);
        do_div(elapsed_csecs64, NSEC_PER_SEC / 100);
        elapsed_csecs = elapsed_csecs64;

        if (todo) {
                /* This does not unfreeze processes that are already frozen
                 * (we have slightly ugly calling convention in that respect,
                 * and caller must call thaw_processes() if something fails),
                 * but it cleans up leftover PF_FREEZE requests.
                 */
                printk("\n");
                printk(KERN_ERR "Freezing of tasks failed after %d.%02d seconds "
                                "(%d tasks refusing to freeze):\n",
                                elapsed_csecs / 100, elapsed_csecs % 100, todo);
                show_state();
                read_lock(&tasklist_lock);
                do_each_thread(g, p) {
                        task_lock(p);
                        if (freezing(p) && !freezer_should_skip(p))
                                printk(KERN_ERR " %s\n", p->comm);
                        cancel_freezing(p);
                        task_unlock(p);
                } while_each_thread(g, p);
                read_unlock(&tasklist_lock);
        } else {
                printk("(elapsed %d.%02d seconds) ", elapsed_csecs / 100,
                        elapsed_csecs % 100);
        }

        return todo ? -EBUSY : 0;
}

/**
 *      freeze_processes - tell processes to enter the refrigerator
 */
int freeze_processes(void)
{
        int error;

        printk("Freezing user space processes ... ");
        error = try_to_freeze_tasks(true);
        if (error)
                goto Exit;
        printk("done.\n");

        printk("Freezing remaining freezable tasks ... ");
        error = try_to_freeze_tasks(false);
        if (error)
                goto Exit;
        printk("done.");
 Exit:
        BUG_ON(in_atomic());
        printk("\n");
        return error;
}

static void thaw_tasks(bool nosig_only)
{
        struct task_struct *g, *p;

        read_lock(&tasklist_lock);
        do_each_thread(g, p) {
                if (!freezeable(p))
                        continue;

                if (nosig_only && should_send_signal(p))
                        continue;

                thaw_process(p);
        } while_each_thread(g, p);
        read_unlock(&tasklist_lock);
}

void thaw_processes(void)
{
        printk("Restarting tasks ... ");
        thaw_tasks(true);
        thaw_tasks(false);
        schedule();
        printk("done.\n");
}

EXPORT_SYMBOL(refrigerator);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading