[funini.com] -> [kei@sodan] -> Kernel Reading

root/kernel/posix-cpu-timers.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. check_clock
  2. timespec_to_sample
  3. sample_to_timespec
  4. cpu_time_before
  5. cpu_time_add
  6. cpu_time_sub
  7. cputime_div_non_zero
  8. bump_cpu_timer
  9. prof_ticks
  10. virt_ticks
  11. sched_ns
  12. posix_cpu_clock_getres
  13. posix_cpu_clock_set
  14. cpu_clock_sample
  15. cpu_clock_sample_group_locked
  16. cpu_clock_sample_group
  17. posix_cpu_clock_get
  18. posix_cpu_timer_create
  19. posix_cpu_timer_del
  20. cleanup_timers
  21. posix_cpu_timers_exit
  22. posix_cpu_timers_exit_group
  23. process_timer_rebalance
  24. clear_dead_task
  25. arm_timer
  26. cpu_timer_fire
  27. posix_cpu_timer_set
  28. posix_cpu_timer_get
  29. check_thread_timers
  30. check_process_timers
  31. posix_cpu_timer_schedule
  32. run_posix_cpu_timers
  33. set_process_cpu_timer
  34. do_cpu_nanosleep
  35. posix_cpu_nsleep
  36. posix_cpu_nsleep_restart
  37. process_cpu_clock_getres
  38. process_cpu_clock_get
  39. process_cpu_timer_create
  40. process_cpu_nsleep
  41. process_cpu_nsleep_restart
  42. thread_cpu_clock_getres
  43. thread_cpu_clock_get
  44. thread_cpu_timer_create
  45. thread_cpu_nsleep
  46. thread_cpu_nsleep_restart
  47. init_posix_cpu_timers

/*
 * Implement CPU time clocks for the POSIX clock interface.
 */

#include <linux/sched.h>
#include <linux/posix-timers.h>
#include <linux/errno.h>
#include <linux/math64.h>
#include <asm/uaccess.h>

static int check_clock(const clockid_t which_clock)
{
        int error = 0;
        struct task_struct *p;
        const pid_t pid = CPUCLOCK_PID(which_clock);

        if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
                return -EINVAL;

        if (pid == 0)
                return 0;

        read_lock(&tasklist_lock);
        p = find_task_by_vpid(pid);
        if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
                   same_thread_group(p, current) : thread_group_leader(p))) {
                error = -EINVAL;
        }
        read_unlock(&tasklist_lock);

        return error;
}

static inline union cpu_time_count
timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
{
        union cpu_time_count ret;
        ret.sched = 0;          /* high half always zero when .cpu used */
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
                ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
        } else {
                ret.cpu = timespec_to_cputime(tp);
        }
        return ret;
}

static void sample_to_timespec(const clockid_t which_clock,
                               union cpu_time_count cpu,
                               struct timespec *tp)
{
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
                *tp = ns_to_timespec(cpu.sched);
        else
                cputime_to_timespec(cpu.cpu, tp);
}

static inline int cpu_time_before(const clockid_t which_clock,
                                  union cpu_time_count now,
                                  union cpu_time_count then)
{
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
                return now.sched < then.sched;
        }  else {
                return cputime_lt(now.cpu, then.cpu);
        }
}
static inline void cpu_time_add(const clockid_t which_clock,
                                union cpu_time_count *acc,
                                union cpu_time_count val)
{
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
                acc->sched += val.sched;
        }  else {
                acc->cpu = cputime_add(acc->cpu, val.cpu);
        }
}
static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
                                                union cpu_time_count a,
                                                union cpu_time_count b)
{
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
                a.sched -= b.sched;
        }  else {
                a.cpu = cputime_sub(a.cpu, b.cpu);
        }
        return a;
}

/*
 * Divide and limit the result to res >= 1
 *
 * This is necessary to prevent signal delivery starvation, when the result of
 * the division would be rounded down to 0.
 */
static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
{
        cputime_t res = cputime_div(time, div);

        return max_t(cputime_t, res, 1);
}

/*
 * Update expiry time from increment, and increase overrun count,
 * given the current clock sample.
 */
static void bump_cpu_timer(struct k_itimer *timer,
                                  union cpu_time_count now)
{
        int i;

        if (timer->it.cpu.incr.sched == 0)
                return;

        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
                unsigned long long delta, incr;

                if (now.sched < timer->it.cpu.expires.sched)
                        return;
                incr = timer->it.cpu.incr.sched;
                delta = now.sched + incr - timer->it.cpu.expires.sched;
                /* Don't use (incr*2 < delta), incr*2 might overflow. */
                for (i = 0; incr < delta - incr; i++)
                        incr = incr << 1;
                for (; i >= 0; incr >>= 1, i--) {
                        if (delta < incr)
                                continue;
                        timer->it.cpu.expires.sched += incr;
                        timer->it_overrun += 1 << i;
                        delta -= incr;
                }
        } else {
                cputime_t delta, incr;

                if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
                        return;
                incr = timer->it.cpu.incr.cpu;
                delta = cputime_sub(cputime_add(now.cpu, incr),
                                    timer->it.cpu.expires.cpu);
                /* Don't use (incr*2 < delta), incr*2 might overflow. */
                for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
                             incr = cputime_add(incr, incr);
                for (; i >= 0; incr = cputime_halve(incr), i--) {
                        if (cputime_lt(delta, incr))
                                continue;
                        timer->it.cpu.expires.cpu =
                                cputime_add(timer->it.cpu.expires.cpu, incr);
                        timer->it_overrun += 1 << i;
                        delta = cputime_sub(delta, incr);
                }
        }
}

static inline cputime_t prof_ticks(struct task_struct *p)
{
        return cputime_add(p->utime, p->stime);
}
static inline cputime_t virt_ticks(struct task_struct *p)
{
        return p->utime;
}
static inline unsigned long long sched_ns(struct task_struct *p)
{
        return task_sched_runtime(p);
}

int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
{
        int error = check_clock(which_clock);
        if (!error) {
                tp->tv_sec = 0;
                tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
                if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
                        /*
                         * If sched_clock is using a cycle counter, we
                         * don't have any idea of its true resolution
                         * exported, but it is much more than 1s/HZ.
                         */
                        tp->tv_nsec = 1;
                }
        }
        return error;
}

int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
{
        /*
         * You can never reset a CPU clock, but we check for other errors
         * in the call before failing with EPERM.
         */
        int error = check_clock(which_clock);
        if (error == 0) {
                error = -EPERM;
        }
        return error;
}


/*
 * Sample a per-thread clock for the given task.
 */
static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
                            union cpu_time_count *cpu)
{
        switch (CPUCLOCK_WHICH(which_clock)) {
        default:
                return -EINVAL;
        case CPUCLOCK_PROF:
                cpu->cpu = prof_ticks(p);
                break;
        case CPUCLOCK_VIRT:
                cpu->cpu = virt_ticks(p);
                break;
        case CPUCLOCK_SCHED:
                cpu->sched = sched_ns(p);
                break;
        }
        return 0;
}

/*
 * Sample a process (thread group) clock for the given group_leader task.
 * Must be called with tasklist_lock held for reading.
 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
 */
static int cpu_clock_sample_group_locked(unsigned int clock_idx,
                                         struct task_struct *p,
                                         union cpu_time_count *cpu)
{
        struct task_struct *t = p;
        switch (clock_idx) {
        default:
                return -EINVAL;
        case CPUCLOCK_PROF:
                cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
                do {
                        cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
                        t = next_thread(t);
                } while (t != p);
                break;
        case CPUCLOCK_VIRT:
                cpu->cpu = p->signal->utime;
                do {
                        cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
                        t = next_thread(t);
                } while (t != p);
                break;
        case CPUCLOCK_SCHED:
                cpu->sched = p->signal->sum_sched_runtime;
                /* Add in each other live thread.  */
                while ((t = next_thread(t)) != p) {
                        cpu->sched += t->se.sum_exec_runtime;
                }
                cpu->sched += sched_ns(p);
                break;
        }
        return 0;
}

/*
 * Sample a process (thread group) clock for the given group_leader task.
 * Must be called with tasklist_lock held for reading.
 */
static int cpu_clock_sample_group(const clockid_t which_clock,
                                  struct task_struct *p,
                                  union cpu_time_count *cpu)
{
        int ret;
        unsigned long flags;
        spin_lock_irqsave(&p->sighand->siglock, flags);
        ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
                                            cpu);
        spin_unlock_irqrestore(&p->sighand->siglock, flags);
        return ret;
}


int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
{
        const pid_t pid = CPUCLOCK_PID(which_clock);
        int error = -EINVAL;
        union cpu_time_count rtn;

        if (pid == 0) {
                /*
                 * Special case constant value for our own clocks.
                 * We don't have to do any lookup to find ourselves.
                 */
                if (CPUCLOCK_PERTHREAD(which_clock)) {
                        /*
                         * Sampling just ourselves we can do with no locking.
                         */
                        error = cpu_clock_sample(which_clock,
                                                 current, &rtn);
                } else {
                        read_lock(&tasklist_lock);
                        error = cpu_clock_sample_group(which_clock,
                                                       current, &rtn);
                        read_unlock(&tasklist_lock);
                }
        } else {
                /*
                 * Find the given PID, and validate that the caller
                 * should be able to see it.
                 */
                struct task_struct *p;
                rcu_read_lock();
                p = find_task_by_vpid(pid);
                if (p) {
                        if (CPUCLOCK_PERTHREAD(which_clock)) {
                                if (same_thread_group(p, current)) {
                                        error = cpu_clock_sample(which_clock,
                                                                 p, &rtn);
                                }
                        } else {
                                read_lock(&tasklist_lock);
                                if (thread_group_leader(p) && p->signal) {
                                        error =
                                            cpu_clock_sample_group(which_clock,
                                                                   p, &rtn);
                                }
                                read_unlock(&tasklist_lock);
                        }
                }
                rcu_read_unlock();
        }

        if (error)
                return error;
        sample_to_timespec(which_clock, rtn, tp);
        return 0;
}


/*
 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 * This is called from sys_timer_create with the new timer already locked.
 */
int posix_cpu_timer_create(struct k_itimer *new_timer)
{
        int ret = 0;
        const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
        struct task_struct *p;

        if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
                return -EINVAL;

        INIT_LIST_HEAD(&new_timer->it.cpu.entry);
        new_timer->it.cpu.incr.sched = 0;
        new_timer->it.cpu.expires.sched = 0;

        read_lock(&tasklist_lock);
        if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
                if (pid == 0) {
                        p = current;
                } else {
                        p = find_task_by_vpid(pid);
                        if (p && !same_thread_group(p, current))
                                p = NULL;
                }
        } else {
                if (pid == 0) {
                        p = current->group_leader;
                } else {
                        p = find_task_by_vpid(pid);
                        if (p && !thread_group_leader(p))
                                p = NULL;
                }
        }
        new_timer->it.cpu.task = p;
        if (p) {
                get_task_struct(p);
        } else {
                ret = -EINVAL;
        }
        read_unlock(&tasklist_lock);

        return ret;
}

/*
 * Clean up a CPU-clock timer that is about to be destroyed.
 * This is called from timer deletion with the timer already locked.
 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 * and try again.  (This happens when the timer is in the middle of firing.)
 */
int posix_cpu_timer_del(struct k_itimer *timer)
{
        struct task_struct *p = timer->it.cpu.task;
        int ret = 0;

        if (likely(p != NULL)) {
                read_lock(&tasklist_lock);
                if (unlikely(p->signal == NULL)) {
                        /*
                         * We raced with the reaping of the task.
                         * The deletion should have cleared us off the list.
                         */
                        BUG_ON(!list_empty(&timer->it.cpu.entry));
                } else {
                        spin_lock(&p->sighand->siglock);
                        if (timer->it.cpu.firing)
                                ret = TIMER_RETRY;
                        else
                                list_del(&timer->it.cpu.entry);
                        spin_unlock(&p->sighand->siglock);
                }
                read_unlock(&tasklist_lock);

                if (!ret)
                        put_task_struct(p);
        }

        return ret;
}

/*
 * Clean out CPU timers still ticking when a thread exited.  The task
 * pointer is cleared, and the expiry time is replaced with the residual
 * time for later timer_gettime calls to return.
 * This must be called with the siglock held.
 */
static void cleanup_timers(struct list_head *head,
                           cputime_t utime, cputime_t stime,
                           unsigned long long sum_exec_runtime)
{
        struct cpu_timer_list *timer, *next;
        cputime_t ptime = cputime_add(utime, stime);

        list_for_each_entry_safe(timer, next, head, entry) {
                list_del_init(&timer->entry);
                if (cputime_lt(timer->expires.cpu, ptime)) {
                        timer->expires.cpu = cputime_zero;
                } else {
                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
                                                         ptime);
                }
        }

        ++head;
        list_for_each_entry_safe(timer, next, head, entry) {
                list_del_init(&timer->entry);
                if (cputime_lt(timer->expires.cpu, utime)) {
                        timer->expires.cpu = cputime_zero;
                } else {
                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
                                                         utime);
                }
        }

        ++head;
        list_for_each_entry_safe(timer, next, head, entry) {
                list_del_init(&timer->entry);
                if (timer->expires.sched < sum_exec_runtime) {
                        timer->expires.sched = 0;
                } else {
                        timer->expires.sched -= sum_exec_runtime;
                }
        }
}

/*
 * These are both called with the siglock held, when the current thread
 * is being reaped.  When the final (leader) thread in the group is reaped,
 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 */
void posix_cpu_timers_exit(struct task_struct *tsk)
{
        cleanup_timers(tsk->cpu_timers,
                       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);

}
void posix_cpu_timers_exit_group(struct task_struct *tsk)
{
        cleanup_timers(tsk->signal->cpu_timers,
                       cputime_add(tsk->utime, tsk->signal->utime),
                       cputime_add(tsk->stime, tsk->signal->stime),
                     tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
}


/*
 * Set the expiry times of all the threads in the process so one of them
 * will go off before the process cumulative expiry total is reached.
 */
static void process_timer_rebalance(struct task_struct *p,
                                    unsigned int clock_idx,
                                    union cpu_time_count expires,
                                    union cpu_time_count val)
{
        cputime_t ticks, left;
        unsigned long long ns, nsleft;
        struct task_struct *t = p;
        unsigned int nthreads = atomic_read(&p->signal->live);

        if (!nthreads)
                return;

        switch (clock_idx) {
        default:
                BUG();
                break;
        case CPUCLOCK_PROF:
                left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
                                       nthreads);
                do {
                        if (likely(!(t->flags & PF_EXITING))) {
                                ticks = cputime_add(prof_ticks(t), left);
                                if (cputime_eq(t->it_prof_expires,
                                               cputime_zero) ||
                                    cputime_gt(t->it_prof_expires, ticks)) {
                                        t->it_prof_expires = ticks;
                                }
                        }
                        t = next_thread(t);
                } while (t != p);
                break;
        case CPUCLOCK_VIRT:
                left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
                                       nthreads);
                do {
                        if (likely(!(t->flags & PF_EXITING))) {
                                ticks = cputime_add(virt_ticks(t), left);
                                if (cputime_eq(t->it_virt_expires,
                                               cputime_zero) ||
                                    cputime_gt(t->it_virt_expires, ticks)) {
                                        t->it_virt_expires = ticks;
                                }
                        }
                        t = next_thread(t);
                } while (t != p);
                break;
        case CPUCLOCK_SCHED:
                nsleft = expires.sched - val.sched;
                do_div(nsleft, nthreads);
                nsleft = max_t(unsigned long long, nsleft, 1);
                do {
                        if (likely(!(t->flags & PF_EXITING))) {
                                ns = t->se.sum_exec_runtime + nsleft;
                                if (t->it_sched_expires == 0 ||
                                    t->it_sched_expires > ns) {
                                        t->it_sched_expires = ns;
                                }
                        }
                        t = next_thread(t);
                } while (t != p);
                break;
        }
}

static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
{
        /*
         * That's all for this thread or process.
         * We leave our residual in expires to be reported.
         */
        put_task_struct(timer->it.cpu.task);
        timer->it.cpu.task = NULL;
        timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
                                             timer->it.cpu.expires,
                                             now);
}

/*
 * Insert the timer on the appropriate list before any timers that
 * expire later.  This must be called with the tasklist_lock held
 * for reading, and interrupts disabled.
 */
static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
{
        struct task_struct *p = timer->it.cpu.task;
        struct list_head *head, *listpos;
        struct cpu_timer_list *const nt = &timer->it.cpu;
        struct cpu_timer_list *next;
        unsigned long i;

        head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
                p->cpu_timers : p->signal->cpu_timers);
        head += CPUCLOCK_WHICH(timer->it_clock);

        BUG_ON(!irqs_disabled());
        spin_lock(&p->sighand->siglock);

        listpos = head;
        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
                list_for_each_entry(next, head, entry) {
                        if (next->expires.sched > nt->expires.sched)
                                break;
                        listpos = &next->entry;
                }
        } else {
                list_for_each_entry(next, head, entry) {
                        if (cputime_gt(next->expires.cpu, nt->expires.cpu))
                                break;
                        listpos = &next->entry;
                }
        }
        list_add(&nt->entry, listpos);

        if (listpos == head) {
                /*
                 * We are the new earliest-expiring timer.
                 * If we are a thread timer, there can always
                 * be a process timer telling us to stop earlier.
                 */

                if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
                        switch (CPUCLOCK_WHICH(timer->it_clock)) {
                        default:
                                BUG();
                        case CPUCLOCK_PROF:
                                if (cputime_eq(p->it_prof_expires,
                                               cputime_zero) ||
                                    cputime_gt(p->it_prof_expires,
                                               nt->expires.cpu))
                                        p->it_prof_expires = nt->expires.cpu;
                                break;
                        case CPUCLOCK_VIRT:
                                if (cputime_eq(p->it_virt_expires,
                                               cputime_zero) ||
                                    cputime_gt(p->it_virt_expires,
                                               nt->expires.cpu))
                                        p->it_virt_expires = nt->expires.cpu;
                                break;
                        case CPUCLOCK_SCHED:
                                if (p->it_sched_expires == 0 ||
                                    p->it_sched_expires > nt->expires.sched)
                                        p->it_sched_expires = nt->expires.sched;
                                break;
                        }
                } else {
                        /*
                         * For a process timer, we must balance
                         * all the live threads' expirations.
                         */
                        switch (CPUCLOCK_WHICH(timer->it_clock)) {
                        default:
                                BUG();
                        case CPUCLOCK_VIRT:
                                if (!cputime_eq(p->signal->it_virt_expires,
                                                cputime_zero) &&
                                    cputime_lt(p->signal->it_virt_expires,
                                               timer->it.cpu.expires.cpu))
                                        break;
                                goto rebalance;
                        case CPUCLOCK_PROF:
                                if (!cputime_eq(p->signal->it_prof_expires,
                                                cputime_zero) &&
                                    cputime_lt(p->signal->it_prof_expires,
                                               timer->it.cpu.expires.cpu))
                                        break;
                                i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
                                if (i != RLIM_INFINITY &&
                                    i <= cputime_to_secs(timer->it.cpu.expires.cpu))
                                        break;
                                goto rebalance;
                        case CPUCLOCK_SCHED:
                        rebalance:
                                process_timer_rebalance(
                                        timer->it.cpu.task,
                                        CPUCLOCK_WHICH(timer->it_clock),
                                        timer->it.cpu.expires, now);
                                break;
                        }
                }
        }

        spin_unlock(&p->sighand->siglock);
}

/*
 * The timer is locked, fire it and arrange for its reload.
 */
static void cpu_timer_fire(struct k_itimer *timer)
{
        if (unlikely(timer->sigq == NULL)) {
                /*
                 * This a special case for clock_nanosleep,
                 * not a normal timer from sys_timer_create.
                 */
                wake_up_process(timer->it_process);
                timer->it.cpu.expires.sched = 0;
        } else if (timer->it.cpu.incr.sched == 0) {
                /*
                 * One-shot timer.  Clear it as soon as it's fired.
                 */
                posix_timer_event(timer, 0);
                timer->it.cpu.expires.sched = 0;
        } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
                /*
                 * The signal did not get queued because the signal
                 * was ignored, so we won't get any callback to
                 * reload the timer.  But we need to keep it
                 * ticking in case the signal is deliverable next time.
                 */
                posix_cpu_timer_schedule(timer);
        }
}

/*
 * Guts of sys_timer_settime for CPU timers.
 * This is called with the timer locked and interrupts disabled.
 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 * and try again.  (This happens when the timer is in the middle of firing.)
 */
int posix_cpu_timer_set(struct k_itimer *timer, int flags,
                        struct itimerspec *new, struct itimerspec *old)
{
        struct task_struct *p = timer->it.cpu.task;
        union cpu_time_count old_expires, new_expires, val;
        int ret;

        if (unlikely(p == NULL)) {
                /*
                 * Timer refers to a dead task's clock.
                 */
                return -ESRCH;
        }

        new_expires = timespec_to_sample(timer->it_clock, &new->it_value);

        read_lock(&tasklist_lock);
        /*
         * We need the tasklist_lock to protect against reaping that
         * clears p->signal.  If p has just been reaped, we can no
         * longer get any information about it at all.
         */
        if (unlikely(p->signal == NULL)) {
                read_unlock(&tasklist_lock);
                put_task_struct(p);
                timer->it.cpu.task = NULL;
                return -ESRCH;
        }

        /*
         * Disarm any old timer after extracting its expiry time.
         */
        BUG_ON(!irqs_disabled());

        ret = 0;
        spin_lock(&p->sighand->siglock);
        old_expires = timer->it.cpu.expires;
        if (unlikely(timer->it.cpu.firing)) {
                timer->it.cpu.firing = -1;
                ret = TIMER_RETRY;
        } else
                list_del_init(&timer->it.cpu.entry);
        spin_unlock(&p->sighand->siglock);

        /*
         * We need to sample the current value to convert the new
         * value from to relative and absolute, and to convert the
         * old value from absolute to relative.  To set a process
         * timer, we need a sample to balance the thread expiry
         * times (in arm_timer).  With an absolute time, we must
         * check if it's already passed.  In short, we need a sample.
         */
        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
                cpu_clock_sample(timer->it_clock, p, &val);
        } else {
                cpu_clock_sample_group(timer->it_clock, p, &val);
        }

        if (old) {
                if (old_expires.sched == 0) {
                        old->it_value.tv_sec = 0;
                        old->it_value.tv_nsec = 0;
                } else {
                        /*
                         * Update the timer in case it has
                         * overrun already.  If it has,
                         * we'll report it as having overrun
                         * and with the next reloaded timer
                         * already ticking, though we are
                         * swallowing that pending
                         * notification here to install the
                         * new setting.
                         */
                        bump_cpu_timer(timer, val);
                        if (cpu_time_before(timer->it_clock, val,
                                            timer->it.cpu.expires)) {
                                old_expires = cpu_time_sub(
                                        timer->it_clock,
                                        timer->it.cpu.expires, val);
                                sample_to_timespec(timer->it_clock,
                                                   old_expires,
                                                   &old->it_value);
                        } else {
                                old->it_value.tv_nsec = 1;
                                old->it_value.tv_sec = 0;
                        }
                }
        }

        if (unlikely(ret)) {
                /*
                 * We are colliding with the timer actually firing.
                 * Punt after filling in the timer's old value, and
                 * disable this firing since we are already reporting
                 * it as an overrun (thanks to bump_cpu_timer above).
                 */
                read_unlock(&tasklist_lock);
                goto out;
        }

        if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
                cpu_time_add(timer->it_clock, &new_expires, val);
        }

        /*
         * Install the new expiry time (or zero).
         * For a timer with no notification action, we don't actually
         * arm the timer (we'll just fake it for timer_gettime).
         */
        timer->it.cpu.expires = new_expires;
        if (new_expires.sched != 0 &&
            (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
            cpu_time_before(timer->it_clock, val, new_expires)) {
                arm_timer(timer, val);
        }

        read_unlock(&tasklist_lock);

        /*
         * Install the new reload setting, and
         * set up the signal and overrun bookkeeping.
         */
        timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
                                                &new->it_interval);

        /*
         * This acts as a modification timestamp for the timer,
         * so any automatic reload attempt will punt on seeing
         * that we have reset the timer manually.
         */
        timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
                ~REQUEUE_PENDING;
        timer->it_overrun_last = 0;
        timer->it_overrun = -1;

        if (new_expires.sched != 0 &&
            (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
            !cpu_time_before(timer->it_clock, val, new_expires)) {
                /*
                 * The designated time already passed, so we notify
                 * immediately, even if the thread never runs to
                 * accumulate more time on this clock.
                 */
                cpu_timer_fire(timer);
        }

        ret = 0;
 out:
        if (old) {
                sample_to_timespec(timer->it_clock,
                                   timer->it.cpu.incr, &old->it_interval);
        }
        return ret;
}

void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
{
        union cpu_time_count now;
        struct task_struct *p = timer->it.cpu.task;
        int clear_dead;

        /*
         * Easy part: convert the reload time.
         */
        sample_to_timespec(timer->it_clock,
                           timer->it.cpu.incr, &itp->it_interval);

        if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
                itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
                return;
        }

        if (unlikely(p == NULL)) {
                /*
                 * This task already died and the timer will never fire.
                 * In this case, expires is actually the dead value.
                 */
        dead:
                sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
                                   &itp->it_value);
                return;
        }

        /*
         * Sample the clock to take the difference with the expiry time.
         */
        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
                cpu_clock_sample(timer->it_clock, p, &now);
                clear_dead = p->exit_state;
        } else {
                read_lock(&tasklist_lock);
                if (unlikely(p->signal == NULL)) {
                        /*
                         * The process has been reaped.
                         * We can't even collect a sample any more.
                         * Call the timer disarmed, nothing else to do.
                         */
                        put_task_struct(p);
                        timer->it.cpu.task = NULL;
                        timer->it.cpu.expires.sched = 0;
                        read_unlock(&tasklist_lock);
                        goto dead;
                } else {
                        cpu_clock_sample_group(timer->it_clock, p, &now);
                        clear_dead = (unlikely(p->exit_state) &&
                                      thread_group_empty(p));
                }
                read_unlock(&tasklist_lock);
        }

        if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
                if (timer->it.cpu.incr.sched == 0 &&
                    cpu_time_before(timer->it_clock,
                                    timer->it.cpu.expires, now)) {
                        /*
                         * Do-nothing timer expired and has no reload,
                         * so it's as if it was never set.
                         */
                        timer->it.cpu.expires.sched = 0;
                        itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
                        return;
                }
                /*
                 * Account for any expirations and reloads that should
                 * have happened.
                 */
                bump_cpu_timer(timer, now);
        }

        if (unlikely(clear_dead)) {
                /*
                 * We've noticed that the thread is dead, but
                 * not yet reaped.  Take this opportunity to
                 * drop our task ref.
                 */
                clear_dead_task(timer, now);
                goto dead;
        }

        if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
                sample_to_timespec(timer->it_clock,
                                   cpu_time_sub(timer->it_clock,
                                                timer->it.cpu.expires, now),
                                   &itp->it_value);
        } else {
                /*
                 * The timer should have expired already, but the firing
                 * hasn't taken place yet.  Say it's just about to expire.
                 */
                itp->it_value.tv_nsec = 1;
                itp->it_value.tv_sec = 0;
        }
}

/*
 * Check for any per-thread CPU timers that have fired and move them off
 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 */
static void check_thread_timers(struct task_struct *tsk,
                                struct list_head *firing)
{
        int maxfire;
        struct list_head *timers = tsk->cpu_timers;
        struct signal_struct *const sig = tsk->signal;

        maxfire = 20;
        tsk->it_prof_expires = cputime_zero;
        while (!list_empty(timers)) {
                struct cpu_timer_list *t = list_first_entry(timers,
                                                      struct cpu_timer_list,
                                                      entry);
                if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
                        tsk->it_prof_expires = t->expires.cpu;
                        break;
                }
                t->firing = 1;
                list_move_tail(&t->entry, firing);
        }

        ++timers;
        maxfire = 20;
        tsk->it_virt_expires = cputime_zero;
        while (!list_empty(timers)) {
                struct cpu_timer_list *t = list_first_entry(timers,
                                                      struct cpu_timer_list,
                                                      entry);
                if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
                        tsk->it_virt_expires = t->expires.cpu;
                        break;
                }
                t->firing = 1;
                list_move_tail(&t->entry, firing);
        }

        ++timers;
        maxfire = 20;
        tsk->it_sched_expires = 0;
        while (!list_empty(timers)) {
                struct cpu_timer_list *t = list_first_entry(timers,
                                                      struct cpu_timer_list,
                                                      entry);
                if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
                        tsk->it_sched_expires = t->expires.sched;
                        break;
                }
                t->firing = 1;
                list_move_tail(&t->entry, firing);
        }

        /*
         * Check for the special case thread timers.
         */
        if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
                unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
                unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;

                if (hard != RLIM_INFINITY &&
                    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
                        /*
                         * At the hard limit, we just die.
                         * No need to calculate anything else now.
                         */
                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
                        return;
                }
                if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
                        /*
                         * At the soft limit, send a SIGXCPU every second.
                         */
                        if (sig->rlim[RLIMIT_RTTIME].rlim_cur
                            < sig->rlim[RLIMIT_RTTIME].rlim_max) {
                                sig->rlim[RLIMIT_RTTIME].rlim_cur +=
                                                                USEC_PER_SEC;
                        }
                        printk(KERN_INFO
                                "RT Watchdog Timeout: %s[%d]\n",
                                tsk->comm, task_pid_nr(tsk));
                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
                }
        }
}

/*
 * Check for any per-thread CPU timers that have fired and move them
 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 * have already been taken off.
 */
static void check_process_timers(struct task_struct *tsk,
                                 struct list_head *firing)
{
        int maxfire;
        struct signal_struct *const sig = tsk->signal;
        cputime_t utime, stime, ptime, virt_expires, prof_expires;
        unsigned long long sum_sched_runtime, sched_expires;
        struct task_struct *t;
        struct list_head *timers = sig->cpu_timers;

        /*
         * Don't sample the current process CPU clocks if there are no timers.
         */
        if (list_empty(&timers[CPUCLOCK_PROF]) &&
            cputime_eq(sig->it_prof_expires, cputime_zero) &&
            sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
            list_empty(&timers[CPUCLOCK_VIRT]) &&
            cputime_eq(sig->it_virt_expires, cputime_zero) &&
            list_empty(&timers[CPUCLOCK_SCHED]))
                return;

        /*
         * Collect the current process totals.
         */
        utime = sig->utime;
        stime = sig->stime;
        sum_sched_runtime = sig->sum_sched_runtime;
        t = tsk;
        do {
                utime = cputime_add(utime, t->utime);
                stime = cputime_add(stime, t->stime);
                sum_sched_runtime += t->se.sum_exec_runtime;
                t = next_thread(t);
        } while (t != tsk);
        ptime = cputime_add(utime, stime);

        maxfire = 20;
        prof_expires = cputime_zero;
        while (!list_empty(timers)) {
                struct cpu_timer_list *tl = list_first_entry(timers,
                                                      struct cpu_timer_list,
                                                      entry);
                if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
                        prof_expires = tl->expires.cpu;
                        break;
                }
                tl->firing = 1;
                list_move_tail(&tl->entry, firing);
        }

        ++timers;
        maxfire = 20;
        virt_expires = cputime_zero;
        while (!list_empty(timers)) {
                struct cpu_timer_list *tl = list_first_entry(timers,
                                                      struct cpu_timer_list,
                                                      entry);
                if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
                        virt_expires = tl->expires.cpu;
                        break;
                }
                tl->firing = 1;
                list_move_tail(&tl->entry, firing);
        }

        ++timers;
        maxfire = 20;
        sched_expires = 0;
        while (!list_empty(timers)) {
                struct cpu_timer_list *tl = list_first_entry(timers,
                                                      struct cpu_timer_list,
                                                      entry);
                if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
                        sched_expires = tl->expires.sched;
                        break;
                }
                tl->firing = 1;
                list_move_tail(&tl->entry, firing);
        }

        /*
         * Check for the special case process timers.
         */
        if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
                if (cputime_ge(ptime, sig->it_prof_expires)) {
                        /* ITIMER_PROF fires and reloads.  */
                        sig->it_prof_expires = sig->it_prof_incr;
                        if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
                                sig->it_prof_expires = cputime_add(
                                        sig->it_prof_expires, ptime);
                        }
                        __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
                }
                if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
                    (cputime_eq(prof_expires, cputime_zero) ||
                     cputime_lt(sig->it_prof_expires, prof_expires))) {
                        prof_expires = sig->it_prof_expires;
                }
        }
        if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
                if (cputime_ge(utime, sig->it_virt_expires)) {
                        /* ITIMER_VIRTUAL fires and reloads.  */
                        sig->it_virt_expires = sig->it_virt_incr;
                        if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
                                sig->it_virt_expires = cputime_add(
                                        sig->it_virt_expires, utime);
                        }
                        __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
                }
                if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
                    (cputime_eq(virt_expires, cputime_zero) ||
                     cputime_lt(sig->it_virt_expires, virt_expires))) {
                        virt_expires = sig->it_virt_expires;
                }
        }
        if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
                unsigned long psecs = cputime_to_secs(ptime);
                cputime_t x;
                if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
                        /*
                         * At the hard limit, we just die.
                         * No need to calculate anything else now.
                         */
                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
                        return;
                }
                if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
                        /*
                         * At the soft limit, send a SIGXCPU every second.
                         */
                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
                        if (sig->rlim[RLIMIT_CPU].rlim_cur
                            < sig->rlim[RLIMIT_CPU].rlim_max) {
                                sig->rlim[RLIMIT_CPU].rlim_cur++;
                        }
                }
                x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
                if (cputime_eq(prof_expires, cputime_zero) ||
                    cputime_lt(x, prof_expires)) {
                        prof_expires = x;
                }
        }

        if (!cputime_eq(prof_expires, cputime_zero) ||
            !cputime_eq(virt_expires, cputime_zero) ||
            sched_expires != 0) {
                /*
                 * Rebalance the threads' expiry times for the remaining
                 * process CPU timers.
                 */

                cputime_t prof_left, virt_left, ticks;
                unsigned long long sched_left, sched;
                const unsigned int nthreads = atomic_read(&sig->live);

                if (!nthreads)
                        return;

                prof_left = cputime_sub(prof_expires, utime);
                prof_left = cputime_sub(prof_left, stime);
                prof_left = cputime_div_non_zero(prof_left, nthreads);
                virt_left = cputime_sub(virt_expires, utime);
                virt_left = cputime_div_non_zero(virt_left, nthreads);
                if (sched_expires) {
                        sched_left = sched_expires - sum_sched_runtime;
                        do_div(sched_left, nthreads);
                        sched_left = max_t(unsigned long long, sched_left, 1);
                } else {
                        sched_left = 0;
                }
                t = tsk;
                do {
                        if (unlikely(t->flags & PF_EXITING))
                                continue;

                        ticks = cputime_add(cputime_add(t->utime, t->stime),
                                            prof_left);
                        if (!cputime_eq(prof_expires, cputime_zero) &&
                            (cputime_eq(t->it_prof_expires, cputime_zero) ||
                             cputime_gt(t->it_prof_expires, ticks))) {
                                t->it_prof_expires = ticks;
                        }

                        ticks = cputime_add(t->utime, virt_left);
                        if (!cputime_eq(virt_expires, cputime_zero) &&
                            (cputime_eq(t->it_virt_expires, cputime_zero) ||
                             cputime_gt(t->it_virt_expires, ticks))) {
                                t->it_virt_expires = ticks;
                        }

                        sched = t->se.sum_exec_runtime + sched_left;
                        if (sched_expires && (t->it_sched_expires == 0 ||
                                              t->it_sched_expires > sched)) {
                                t->it_sched_expires = sched;
                        }
                } while ((t = next_thread(t)) != tsk);
        }
}

/*
 * This is called from the signal code (via do_schedule_next_timer)
 * when the last timer signal was delivered and we have to reload the timer.
 */
void posix_cpu_timer_schedule(struct k_itimer *timer)
{
        struct task_struct *p = timer->it.cpu.task;
        union cpu_time_count now;

        if (unlikely(p == NULL))
                /*
                 * The task was cleaned up already, no future firings.
                 */
                goto out;

        /*
         * Fetch the current sample and update the timer's expiry time.
         */
        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
                cpu_clock_sample(timer->it_clock, p, &now);
                bump_cpu_timer(timer, now);
                if (unlikely(p->exit_state)) {
                        clear_dead_task(timer, now);
                        goto out;
                }
                read_lock(&tasklist_lock); /* arm_timer needs it.  */
        } else {
                read_lock(&tasklist_lock);
                if (unlikely(p->signal == NULL)) {
                        /*
                         * The process has been reaped.
                         * We can't even collect a sample any more.
                         */
                        put_task_struct(p);
                        timer->it.cpu.task = p = NULL;
                        timer->it.cpu.expires.sched = 0;
                        goto out_unlock;
                } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
                        /*
                         * We've noticed that the thread is dead, but
                         * not yet reaped.  Take this opportunity to
                         * drop our task ref.
                         */
                        clear_dead_task(timer, now);
                        goto out_unlock;
                }
                cpu_clock_sample_group(timer->it_clock, p, &now);
                bump_cpu_timer(timer, now);
                /* Leave the tasklist_lock locked for the call below.  */
        }

        /*
         * Now re-arm for the new expiry time.
         */
        arm_timer(timer, now);

out_unlock:
        read_unlock(&tasklist_lock);

out:
        timer->it_overrun_last = timer->it_overrun;
        timer->it_overrun = -1;
        ++timer->it_requeue_pending;
}

/*
 * This is called from the timer interrupt handler.  The irq handler has
 * already updated our counts.  We need to check if any timers fire now.
 * Interrupts are disabled.
 */
void run_posix_cpu_timers(struct task_struct *tsk)
{
        LIST_HEAD(firing);
        struct k_itimer *timer, *next;

        BUG_ON(!irqs_disabled());

#define UNEXPIRED(clock) \
                (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
                 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))

        if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
            (tsk->it_sched_expires == 0 ||
             tsk->se.sum_exec_runtime < tsk->it_sched_expires))
                return;

#undef  UNEXPIRED

        /*
         * Double-check with locks held.
         */
        read_lock(&tasklist_lock);
        if (likely(tsk->signal != NULL)) {
                spin_lock(&tsk->sighand->siglock);

                /*
                 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
                 * all the timers that are firing, and put them on the firing list.
                 */
                check_thread_timers(tsk, &firing);
                check_process_timers(tsk, &firing);

                /*
                 * We must release these locks before taking any timer's lock.
                 * There is a potential race with timer deletion here, as the
                 * siglock now protects our private firing list.  We have set
                 * the firing flag in each timer, so that a deletion attempt
                 * that gets the timer lock before we do will give it up and
                 * spin until we've taken care of that timer below.
                 */
                spin_unlock(&tsk->sighand->siglock);
        }
        read_unlock(&tasklist_lock);

        /*
         * Now that all the timers on our list have the firing flag,
         * noone will touch their list entries but us.  We'll take
         * each timer's lock before clearing its firing flag, so no
         * timer call will interfere.
         */
        list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
                int firing;
                spin_lock(&timer->it_lock);
                list_del_init(&timer->it.cpu.entry);
                firing = timer->it.cpu.firing;
                timer->it.cpu.firing = 0;
                /*
                 * The firing flag is -1 if we collided with a reset
                 * of the timer, which already reported this
                 * almost-firing as an overrun.  So don't generate an event.
                 */
                if (likely(firing >= 0)) {
                        cpu_timer_fire(timer);
                }
                spin_unlock(&timer->it_lock);
        }
}

/*
 * Set one of the process-wide special case CPU timers.
 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
 * absolute; non-null for ITIMER_*, where *newval is relative and we update
 * it to be absolute, *oldval is absolute and we update it to be relative.
 */
void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
                           cputime_t *newval, cputime_t *oldval)
{
        union cpu_time_count now;
        struct list_head *head;

        BUG_ON(clock_idx == CPUCLOCK_SCHED);
        cpu_clock_sample_group_locked(clock_idx, tsk, &now);

        if (oldval) {
                if (!cputime_eq(*oldval, cputime_zero)) {
                        if (cputime_le(*oldval, now.cpu)) {
                                /* Just about to fire. */
                                *oldval = jiffies_to_cputime(1);
                        } else {
                                *oldval = cputime_sub(*oldval, now.cpu);
                        }
                }

                if (cputime_eq(*newval, cputime_zero))
                        return;
                *newval = cputime_add(*newval, now.cpu);

                /*
                 * If the RLIMIT_CPU timer will expire before the
                 * ITIMER_PROF timer, we have nothing else to do.
                 */
                if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
                    < cputime_to_secs(*newval))
                        return;
        }

        /*
         * Check whether there are any process timers already set to fire
         * before this one.  If so, we don't have anything more to do.
         */
        head = &tsk->signal->cpu_timers[clock_idx];
        if (list_empty(head) ||
            cputime_ge(list_first_entry(head,
                                  struct cpu_timer_list, entry)->expires.cpu,
                       *newval)) {
                /*
                 * Rejigger each thread's expiry time so that one will
                 * notice before we hit the process-cumulative expiry time.
                 */
                union cpu_time_count expires = { .sched = 0 };
                expires.cpu = *newval;
                process_timer_rebalance(tsk, clock_idx, expires, now);
        }
}

static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
                            struct timespec *rqtp, struct itimerspec *it)
{
        struct k_itimer timer;
        int error;

        /*
         * Set up a temporary timer and then wait for it to go off.
         */
        memset(&timer, 0, sizeof timer);
        spin_lock_init(&timer.it_lock);
        timer.it_clock = which_clock;
        timer.it_overrun = -1;
        error = posix_cpu_timer_create(&timer);
        timer.it_process = current;
        if (!error) {
                static struct itimerspec zero_it;

                memset(it, 0, sizeof *it);
                it->it_value = *rqtp;

                spin_lock_irq(&timer.it_lock);
                error = posix_cpu_timer_set(&timer, flags, it, NULL);
                if (error) {
                        spin_unlock_irq(&timer.it_lock);
                        return error;
                }

                while (!signal_pending(current)) {
                        if (timer.it.cpu.expires.sched == 0) {
                                /*
                                 * Our timer fired and was reset.
                                 */
                                spin_unlock_irq(&timer.it_lock);
                                return 0;
                        }

                        /*
                         * Block until cpu_timer_fire (or a signal) wakes us.
                         */
                        __set_current_state(TASK_INTERRUPTIBLE);
                        spin_unlock_irq(&timer.it_lock);
                        schedule();
                        spin_lock_irq(&timer.it_lock);
                }

                /*
                 * We were interrupted by a signal.
                 */
                sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
                posix_cpu_timer_set(&timer, 0, &zero_it, it);
                spin_unlock_irq(&timer.it_lock);

                if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
                        /*
                         * It actually did fire already.
                         */
                        return 0;
                }

                error = -ERESTART_RESTARTBLOCK;
        }

        return error;
}

int posix_cpu_nsleep(const clockid_t which_clock, int flags,
                     struct timespec *rqtp, struct timespec __user *rmtp)
{
        struct restart_block *restart_block =
            &current_thread_info()->restart_block;
        struct itimerspec it;
        int error;

        /*
         * Diagnose required errors first.
         */
        if (CPUCLOCK_PERTHREAD(which_clock) &&
            (CPUCLOCK_PID(which_clock) == 0 ||
             CPUCLOCK_PID(which_clock) == current->pid))
                return -EINVAL;

        error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);

        if (error == -ERESTART_RESTARTBLOCK) {

                if (flags & TIMER_ABSTIME)
                        return -ERESTARTNOHAND;
                /*
                 * Report back to the user the time still remaining.
                 */
                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
                        return -EFAULT;

                restart_block->fn = posix_cpu_nsleep_restart;
                restart_block->arg0 = which_clock;
                restart_block->arg1 = (unsigned long) rmtp;
                restart_block->arg2 = rqtp->tv_sec;
                restart_block->arg3 = rqtp->tv_nsec;
        }
        return error;
}

long posix_cpu_nsleep_restart(struct restart_block *restart_block)
{
        clockid_t which_clock = restart_block->arg0;
        struct timespec __user *rmtp;
        struct timespec t;
        struct itimerspec it;
        int error;

        rmtp = (struct timespec __user *) restart_block->arg1;
        t.tv_sec = restart_block->arg2;
        t.tv_nsec = restart_block->arg3;

        restart_block->fn = do_no_restart_syscall;
        error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);

        if (error == -ERESTART_RESTARTBLOCK) {
                /*
                 * Report back to the user the time still remaining.
                 */
                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
                        return -EFAULT;

                restart_block->fn = posix_cpu_nsleep_restart;
                restart_block->arg0 = which_clock;
                restart_block->arg1 = (unsigned long) rmtp;
                restart_block->arg2 = t.tv_sec;
                restart_block->arg3 = t.tv_nsec;
        }
        return error;

}


#define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
#define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)

static int process_cpu_clock_getres(const clockid_t which_clock,
                                    struct timespec *tp)
{
        return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
}
static int process_cpu_clock_get(const clockid_t which_clock,
                                 struct timespec *tp)
{
        return posix_cpu_clock_get(PROCESS_CLOCK, tp);
}
static int process_cpu_timer_create(struct k_itimer *timer)
{
        timer->it_clock = PROCESS_CLOCK;
        return posix_cpu_timer_create(timer);
}
static int process_cpu_nsleep(const clockid_t which_clock, int flags,
                              struct timespec *rqtp,
                              struct timespec __user *rmtp)
{
        return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
}
static long process_cpu_nsleep_restart(struct restart_block *restart_block)
{
        return -EINVAL;
}
static int thread_cpu_clock_getres(const clockid_t which_clock,
                                   struct timespec *tp)
{
        return posix_cpu_clock_getres(THREAD_CLOCK, tp);
}
static int thread_cpu_clock_get(const clockid_t which_clock,
                                struct timespec *tp)
{
        return posix_cpu_clock_get(THREAD_CLOCK, tp);
}
static int thread_cpu_timer_create(struct k_itimer *timer)
{
        timer->it_clock = THREAD_CLOCK;
        return posix_cpu_timer_create(timer);
}
static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
                              struct timespec *rqtp, struct timespec __user *rmtp)
{
        return -EINVAL;
}
static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
{
        return -EINVAL;
}

static __init int init_posix_cpu_timers(void)
{
        struct k_clock process = {
                .clock_getres = process_cpu_clock_getres,
                .clock_get = process_cpu_clock_get,
                .clock_set = do_posix_clock_nosettime,
                .timer_create = process_cpu_timer_create,
                .nsleep = process_cpu_nsleep,
                .nsleep_restart = process_cpu_nsleep_restart,
        };
        struct k_clock thread = {
                .clock_getres = thread_cpu_clock_getres,
                .clock_get = thread_cpu_clock_get,
                .clock_set = do_posix_clock_nosettime,
                .timer_create = thread_cpu_timer_create,
                .nsleep = thread_cpu_nsleep,
                .nsleep_restart = thread_cpu_nsleep_restart,
        };

        register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
        register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);

        return 0;
}
__initcall(init_posix_cpu_timers);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading