[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kernel/hpet.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. hpet_readl
  2. hpet_writel
  3. hpet_set_mapping
  4. hpet_clear_mapping
  5. hpet_setup
  6. disable_hpet
  7. is_hpet_capable
  8. is_hpet_enabled
  9. hpet_reserve_platform_timers
  10. hpet_reserve_platform_timers
  11. hpet_start_counter
  12. hpet_resume_device
  13. hpet_restart_counter
  14. hpet_enable_legacy_int
  15. hpet_legacy_clockevent_register
  16. hpet_legacy_set_mode
  17. hpet_legacy_next_event
  18. read_hpet
  19. vread_hpet
  20. hpet_clocksource_register
  21. hpet_enable
  22. hpet_late_init
  23. hpet_disable
  24. hpet_register_irq_handler
  25. hpet_unregister_irq_handler
  26. hpet_rtc_timer_init
  27. hpet_mask_rtc_irq_bit
  28. hpet_set_rtc_irq_bit
  29. hpet_set_alarm_time
  30. hpet_set_periodic_freq
  31. hpet_rtc_dropped_irq
  32. hpet_rtc_timer_reinit
  33. hpet_rtc_interrupt

#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hpet.h>
#include <linux/init.h>
#include <linux/sysdev.h>
#include <linux/pm.h>

#include <asm/fixmap.h>
#include <asm/hpet.h>
#include <asm/i8253.h>
#include <asm/io.h>

#define HPET_MASK       CLOCKSOURCE_MASK(32)
#define HPET_SHIFT      22

/* FSEC = 10^-15
   NSEC = 10^-9 */
#define FSEC_PER_NSEC   1000000L

/*
 * HPET address is set in acpi/boot.c, when an ACPI entry exists
 */
unsigned long hpet_address;
static void __iomem *hpet_virt_address;

unsigned long hpet_readl(unsigned long a)
{
        return readl(hpet_virt_address + a);
}

static inline void hpet_writel(unsigned long d, unsigned long a)
{
        writel(d, hpet_virt_address + a);
}

#ifdef CONFIG_X86_64
#include <asm/pgtable.h>
#endif

static inline void hpet_set_mapping(void)
{
        hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
#ifdef CONFIG_X86_64
        __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
#endif
}

static inline void hpet_clear_mapping(void)
{
        iounmap(hpet_virt_address);
        hpet_virt_address = NULL;
}

/*
 * HPET command line enable / disable
 */
static int boot_hpet_disable;
int hpet_force_user;

static int __init hpet_setup(char* str)
{
        if (str) {
                if (!strncmp("disable", str, 7))
                        boot_hpet_disable = 1;
                if (!strncmp("force", str, 5))
                        hpet_force_user = 1;
        }
        return 1;
}
__setup("hpet=", hpet_setup);

static int __init disable_hpet(char *str)
{
        boot_hpet_disable = 1;
        return 1;
}
__setup("nohpet", disable_hpet);

static inline int is_hpet_capable(void)
{
        return (!boot_hpet_disable && hpet_address);
}

/*
 * HPET timer interrupt enable / disable
 */
static int hpet_legacy_int_enabled;

/**
 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 */
int is_hpet_enabled(void)
{
        return is_hpet_capable() && hpet_legacy_int_enabled;
}
EXPORT_SYMBOL_GPL(is_hpet_enabled);

/*
 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 * timer 0 and timer 1 in case of RTC emulation.
 */
#ifdef CONFIG_HPET
static void hpet_reserve_platform_timers(unsigned long id)
{
        struct hpet __iomem *hpet = hpet_virt_address;
        struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
        unsigned int nrtimers, i;
        struct hpet_data hd;

        nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;

        memset(&hd, 0, sizeof (hd));
        hd.hd_phys_address = hpet_address;
        hd.hd_address = hpet;
        hd.hd_nirqs = nrtimers;
        hpet_reserve_timer(&hd, 0);

#ifdef CONFIG_HPET_EMULATE_RTC
        hpet_reserve_timer(&hd, 1);
#endif

        /*
         * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
         * is wrong for i8259!) not the output IRQ.  Many BIOS writers
         * don't bother configuring *any* comparator interrupts.
         */
        hd.hd_irq[0] = HPET_LEGACY_8254;
        hd.hd_irq[1] = HPET_LEGACY_RTC;

        for (i = 2; i < nrtimers; timer++, i++) {
                hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >>
                        Tn_INT_ROUTE_CNF_SHIFT;
        }

        hpet_alloc(&hd);

}
#else
static void hpet_reserve_platform_timers(unsigned long id) { }
#endif

/*
 * Common hpet info
 */
static unsigned long hpet_period;

static void hpet_legacy_set_mode(enum clock_event_mode mode,
                          struct clock_event_device *evt);
static int hpet_legacy_next_event(unsigned long delta,
                           struct clock_event_device *evt);

/*
 * The hpet clock event device
 */
static struct clock_event_device hpet_clockevent = {
        .name           = "hpet",
        .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
        .set_mode       = hpet_legacy_set_mode,
        .set_next_event = hpet_legacy_next_event,
        .shift          = 32,
        .irq            = 0,
        .rating         = 50,
};

static void hpet_start_counter(void)
{
        unsigned long cfg = hpet_readl(HPET_CFG);

        cfg &= ~HPET_CFG_ENABLE;
        hpet_writel(cfg, HPET_CFG);
        hpet_writel(0, HPET_COUNTER);
        hpet_writel(0, HPET_COUNTER + 4);
        cfg |= HPET_CFG_ENABLE;
        hpet_writel(cfg, HPET_CFG);
}

static void hpet_resume_device(void)
{
        force_hpet_resume();
}

static void hpet_restart_counter(void)
{
        hpet_resume_device();
        hpet_start_counter();
}

static void hpet_enable_legacy_int(void)
{
        unsigned long cfg = hpet_readl(HPET_CFG);

        cfg |= HPET_CFG_LEGACY;
        hpet_writel(cfg, HPET_CFG);
        hpet_legacy_int_enabled = 1;
}

static void hpet_legacy_clockevent_register(void)
{
        /* Start HPET legacy interrupts */
        hpet_enable_legacy_int();

        /*
         * The mult factor is defined as (include/linux/clockchips.h)
         *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
         * hpet_period is in units of femtoseconds (per cycle), so
         *  mult/2^shift = cyc/ns = 10^6/hpet_period
         *  mult = (10^6 * 2^shift)/hpet_period
         *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
         */
        hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
                                      hpet_period, hpet_clockevent.shift);
        /* Calculate the min / max delta */
        hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
                                                           &hpet_clockevent);
        /* 5 usec minimum reprogramming delta. */
        hpet_clockevent.min_delta_ns = 5000;

        /*
         * Start hpet with the boot cpu mask and make it
         * global after the IO_APIC has been initialized.
         */
        hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
        clockevents_register_device(&hpet_clockevent);
        global_clock_event = &hpet_clockevent;
        printk(KERN_DEBUG "hpet clockevent registered\n");
}

static void hpet_legacy_set_mode(enum clock_event_mode mode,
                          struct clock_event_device *evt)
{
        unsigned long cfg, cmp, now;
        uint64_t delta;

        switch(mode) {
        case CLOCK_EVT_MODE_PERIODIC:
                delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
                delta >>= hpet_clockevent.shift;
                now = hpet_readl(HPET_COUNTER);
                cmp = now + (unsigned long) delta;
                cfg = hpet_readl(HPET_T0_CFG);
                cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
                       HPET_TN_SETVAL | HPET_TN_32BIT;
                hpet_writel(cfg, HPET_T0_CFG);
                /*
                 * The first write after writing TN_SETVAL to the
                 * config register sets the counter value, the second
                 * write sets the period.
                 */
                hpet_writel(cmp, HPET_T0_CMP);
                udelay(1);
                hpet_writel((unsigned long) delta, HPET_T0_CMP);
                break;

        case CLOCK_EVT_MODE_ONESHOT:
                cfg = hpet_readl(HPET_T0_CFG);
                cfg &= ~HPET_TN_PERIODIC;
                cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
                hpet_writel(cfg, HPET_T0_CFG);
                break;

        case CLOCK_EVT_MODE_UNUSED:
        case CLOCK_EVT_MODE_SHUTDOWN:
                cfg = hpet_readl(HPET_T0_CFG);
                cfg &= ~HPET_TN_ENABLE;
                hpet_writel(cfg, HPET_T0_CFG);
                break;

        case CLOCK_EVT_MODE_RESUME:
                hpet_enable_legacy_int();
                break;
        }
}

static int hpet_legacy_next_event(unsigned long delta,
                                  struct clock_event_device *evt)
{
        u32 cnt;

        cnt = hpet_readl(HPET_COUNTER);
        cnt += (u32) delta;
        hpet_writel(cnt, HPET_T0_CMP);

        /*
         * We need to read back the CMP register to make sure that
         * what we wrote hit the chip before we compare it to the
         * counter.
         */
        WARN_ON((u32)hpet_readl(HPET_T0_CMP) != cnt);

        return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
}

/*
 * Clock source related code
 */
static cycle_t read_hpet(void)
{
        return (cycle_t)hpet_readl(HPET_COUNTER);
}

#ifdef CONFIG_X86_64
static cycle_t __vsyscall_fn vread_hpet(void)
{
        return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}
#endif

static struct clocksource clocksource_hpet = {
        .name           = "hpet",
        .rating         = 250,
        .read           = read_hpet,
        .mask           = HPET_MASK,
        .shift          = HPET_SHIFT,
        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
        .resume         = hpet_restart_counter,
#ifdef CONFIG_X86_64
        .vread          = vread_hpet,
#endif
};

static int hpet_clocksource_register(void)
{
        u64 start, now;
        cycle_t t1;

        /* Start the counter */
        hpet_start_counter();

        /* Verify whether hpet counter works */
        t1 = read_hpet();
        rdtscll(start);

        /*
         * We don't know the TSC frequency yet, but waiting for
         * 200000 TSC cycles is safe:
         * 4 GHz == 50us
         * 1 GHz == 200us
         */
        do {
                rep_nop();
                rdtscll(now);
        } while ((now - start) < 200000UL);

        if (t1 == read_hpet()) {
                printk(KERN_WARNING
                       "HPET counter not counting. HPET disabled\n");
                return -ENODEV;
        }

        /*
         * The definition of mult is (include/linux/clocksource.h)
         * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
         * so we first need to convert hpet_period to ns/cyc units:
         *  mult/2^shift = ns/cyc = hpet_period/10^6
         *  mult = (hpet_period * 2^shift)/10^6
         *  mult = (hpet_period << shift)/FSEC_PER_NSEC
         */
        clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);

        clocksource_register(&clocksource_hpet);

        return 0;
}

/**
 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 */
int __init hpet_enable(void)
{
        unsigned long id;
        int i;

        if (!is_hpet_capable())
                return 0;

        hpet_set_mapping();

        /*
         * Read the period and check for a sane value:
         */
        hpet_period = hpet_readl(HPET_PERIOD);

        /*
         * AMD SB700 based systems with spread spectrum enabled use a
         * SMM based HPET emulation to provide proper frequency
         * setting. The SMM code is initialized with the first HPET
         * register access and takes some time to complete. During
         * this time the config register reads 0xffffffff. We check
         * for max. 1000 loops whether the config register reads a non
         * 0xffffffff value to make sure that HPET is up and running
         * before we go further. A counting loop is safe, as the HPET
         * access takes thousands of CPU cycles. On non SB700 based
         * machines this check is only done once and has no side
         * effects.
         */
        for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
                if (i == 1000) {
                        printk(KERN_WARNING
                               "HPET config register value = 0xFFFFFFFF. "
                               "Disabling HPET\n");
                        goto out_nohpet;
                }
        }

        if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
                goto out_nohpet;

        /*
         * Read the HPET ID register to retrieve the IRQ routing
         * information and the number of channels
         */
        id = hpet_readl(HPET_ID);

#ifdef CONFIG_HPET_EMULATE_RTC
        /*
         * The legacy routing mode needs at least two channels, tick timer
         * and the rtc emulation channel.
         */
        if (!(id & HPET_ID_NUMBER))
                goto out_nohpet;
#endif

        if (hpet_clocksource_register())
                goto out_nohpet;

        if (id & HPET_ID_LEGSUP) {
                hpet_legacy_clockevent_register();
                return 1;
        }
        return 0;

out_nohpet:
        hpet_clear_mapping();
        boot_hpet_disable = 1;
        return 0;
}

/*
 * Needs to be late, as the reserve_timer code calls kalloc !
 *
 * Not a problem on i386 as hpet_enable is called from late_time_init,
 * but on x86_64 it is necessary !
 */
static __init int hpet_late_init(void)
{
        if (boot_hpet_disable)
                return -ENODEV;

        if (!hpet_address) {
                if (!force_hpet_address)
                        return -ENODEV;

                hpet_address = force_hpet_address;
                hpet_enable();
                if (!hpet_virt_address)
                        return -ENODEV;
        }

        hpet_reserve_platform_timers(hpet_readl(HPET_ID));

        return 0;
}
fs_initcall(hpet_late_init);

void hpet_disable(void)
{
        if (is_hpet_capable()) {
                unsigned long cfg = hpet_readl(HPET_CFG);

                if (hpet_legacy_int_enabled) {
                        cfg &= ~HPET_CFG_LEGACY;
                        hpet_legacy_int_enabled = 0;
                }
                cfg &= ~HPET_CFG_ENABLE;
                hpet_writel(cfg, HPET_CFG);
        }
}

#ifdef CONFIG_HPET_EMULATE_RTC

/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 * is enabled, we support RTC interrupt functionality in software.
 * RTC has 3 kinds of interrupts:
 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 *    is updated
 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 * (1) and (2) above are implemented using polling at a frequency of
 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 * overhead. (DEFAULT_RTC_INT_FREQ)
 * For (3), we use interrupts at 64Hz or user specified periodic
 * frequency, whichever is higher.
 */
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>
#include <asm/rtc.h>

#define DEFAULT_RTC_INT_FREQ    64
#define DEFAULT_RTC_SHIFT       6
#define RTC_NUM_INTS            1

static unsigned long hpet_rtc_flags;
static int hpet_prev_update_sec;
static struct rtc_time hpet_alarm_time;
static unsigned long hpet_pie_count;
static unsigned long hpet_t1_cmp;
static unsigned long hpet_default_delta;
static unsigned long hpet_pie_delta;
static unsigned long hpet_pie_limit;

static rtc_irq_handler irq_handler;

/*
 * Registers a IRQ handler.
 */
int hpet_register_irq_handler(rtc_irq_handler handler)
{
        if (!is_hpet_enabled())
                return -ENODEV;
        if (irq_handler)
                return -EBUSY;

        irq_handler = handler;

        return 0;
}
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);

/*
 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 * and does cleanup.
 */
void hpet_unregister_irq_handler(rtc_irq_handler handler)
{
        if (!is_hpet_enabled())
                return;

        irq_handler = NULL;
        hpet_rtc_flags = 0;
}
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);

/*
 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
 * is not supported by all HPET implementations for timer 1.
 *
 * hpet_rtc_timer_init() is called when the rtc is initialized.
 */
int hpet_rtc_timer_init(void)
{
        unsigned long cfg, cnt, delta, flags;

        if (!is_hpet_enabled())
                return 0;

        if (!hpet_default_delta) {
                uint64_t clc;

                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
                clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
                hpet_default_delta = (unsigned long) clc;
        }

        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
                delta = hpet_default_delta;
        else
                delta = hpet_pie_delta;

        local_irq_save(flags);

        cnt = delta + hpet_readl(HPET_COUNTER);
        hpet_writel(cnt, HPET_T1_CMP);
        hpet_t1_cmp = cnt;

        cfg = hpet_readl(HPET_T1_CFG);
        cfg &= ~HPET_TN_PERIODIC;
        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
        hpet_writel(cfg, HPET_T1_CFG);

        local_irq_restore(flags);

        return 1;
}
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);

/*
 * The functions below are called from rtc driver.
 * Return 0 if HPET is not being used.
 * Otherwise do the necessary changes and return 1.
 */
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
        if (!is_hpet_enabled())
                return 0;

        hpet_rtc_flags &= ~bit_mask;
        return 1;
}
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);

int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
        unsigned long oldbits = hpet_rtc_flags;

        if (!is_hpet_enabled())
                return 0;

        hpet_rtc_flags |= bit_mask;

        if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
                hpet_prev_update_sec = -1;

        if (!oldbits)
                hpet_rtc_timer_init();

        return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);

int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
                        unsigned char sec)
{
        if (!is_hpet_enabled())
                return 0;

        hpet_alarm_time.tm_hour = hrs;
        hpet_alarm_time.tm_min = min;
        hpet_alarm_time.tm_sec = sec;

        return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);

int hpet_set_periodic_freq(unsigned long freq)
{
        uint64_t clc;

        if (!is_hpet_enabled())
                return 0;

        if (freq <= DEFAULT_RTC_INT_FREQ)
                hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
        else {
                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
                do_div(clc, freq);
                clc >>= hpet_clockevent.shift;
                hpet_pie_delta = (unsigned long) clc;
        }
        return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);

int hpet_rtc_dropped_irq(void)
{
        return is_hpet_enabled();
}
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);

static void hpet_rtc_timer_reinit(void)
{
        unsigned long cfg, delta;
        int lost_ints = -1;

        if (unlikely(!hpet_rtc_flags)) {
                cfg = hpet_readl(HPET_T1_CFG);
                cfg &= ~HPET_TN_ENABLE;
                hpet_writel(cfg, HPET_T1_CFG);
                return;
        }

        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
                delta = hpet_default_delta;
        else
                delta = hpet_pie_delta;

        /*
         * Increment the comparator value until we are ahead of the
         * current count.
         */
        do {
                hpet_t1_cmp += delta;
                hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
                lost_ints++;
        } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);

        if (lost_ints) {
                if (hpet_rtc_flags & RTC_PIE)
                        hpet_pie_count += lost_ints;
                if (printk_ratelimit())
                        printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
                                lost_ints);
        }
}

irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
        struct rtc_time curr_time;
        unsigned long rtc_int_flag = 0;

        hpet_rtc_timer_reinit();
        memset(&curr_time, 0, sizeof(struct rtc_time));

        if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
                get_rtc_time(&curr_time);

        if (hpet_rtc_flags & RTC_UIE &&
            curr_time.tm_sec != hpet_prev_update_sec) {
                if (hpet_prev_update_sec >= 0)
                        rtc_int_flag = RTC_UF;
                hpet_prev_update_sec = curr_time.tm_sec;
        }

        if (hpet_rtc_flags & RTC_PIE &&
            ++hpet_pie_count >= hpet_pie_limit) {
                rtc_int_flag |= RTC_PF;
                hpet_pie_count = 0;
        }

        if (hpet_rtc_flags & RTC_AIE &&
            (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
            (curr_time.tm_min == hpet_alarm_time.tm_min) &&
            (curr_time.tm_hour == hpet_alarm_time.tm_hour))
                        rtc_int_flag |= RTC_AF;

        if (rtc_int_flag) {
                rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
                if (irq_handler)
                        irq_handler(rtc_int_flag, dev_id);
        }
        return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
#endif

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading