[funini.com] -> [kei@sodan] -> Kernel Reading

root/net/sunrpc/svc_xprt.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. svc_reg_xprt_class
  2. svc_unreg_xprt_class
  3. svc_print_xprts
  4. svc_xprt_free
  5. svc_xprt_put
  6. svc_xprt_init
  7. __svc_xpo_create
  8. svc_create_xprt
  9. svc_xprt_copy_addrs
  10. svc_print_addr
  11. svc_thread_enqueue
  12. svc_thread_dequeue
  13. svc_xprt_enqueue
  14. svc_xprt_dequeue
  15. svc_xprt_received
  16. svc_reserve
  17. svc_xprt_release
  18. svc_wake_up
  19. svc_port_is_privileged
  20. svc_check_conn_limits
  21. svc_recv
  22. svc_drop
  23. svc_send
  24. svc_age_temp_xprts
  25. svc_delete_xprt
  26. svc_close_xprt
  27. svc_close_all
  28. svc_revisit
  29. svc_defer
  30. svc_deferred_recv
  31. svc_deferred_dequeue
  32. svc_find_xprt
  33. svc_xprt_names

/*
 * linux/net/sunrpc/svc_xprt.c
 *
 * Author: Tom Tucker <tom@opengridcomputing.com>
 */

#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <net/sock.h>
#include <linux/sunrpc/stats.h>
#include <linux/sunrpc/svc_xprt.h>

#define RPCDBG_FACILITY RPCDBG_SVCXPRT

static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
static int svc_deferred_recv(struct svc_rqst *rqstp);
static struct cache_deferred_req *svc_defer(struct cache_req *req);
static void svc_age_temp_xprts(unsigned long closure);

/* apparently the "standard" is that clients close
 * idle connections after 5 minutes, servers after
 * 6 minutes
 *   http://www.connectathon.org/talks96/nfstcp.pdf
 */
static int svc_conn_age_period = 6*60;

/* List of registered transport classes */
static DEFINE_SPINLOCK(svc_xprt_class_lock);
static LIST_HEAD(svc_xprt_class_list);

/* SMP locking strategy:
 *
 *      svc_pool->sp_lock protects most of the fields of that pool.
 *      svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
 *      when both need to be taken (rare), svc_serv->sv_lock is first.
 *      BKL protects svc_serv->sv_nrthread.
 *      svc_sock->sk_lock protects the svc_sock->sk_deferred list
 *             and the ->sk_info_authunix cache.
 *
 *      The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
 *      enqueued multiply. During normal transport processing this bit
 *      is set by svc_xprt_enqueue and cleared by svc_xprt_received.
 *      Providers should not manipulate this bit directly.
 *
 *      Some flags can be set to certain values at any time
 *      providing that certain rules are followed:
 *
 *      XPT_CONN, XPT_DATA:
 *              - Can be set or cleared at any time.
 *              - After a set, svc_xprt_enqueue must be called to enqueue
 *                the transport for processing.
 *              - After a clear, the transport must be read/accepted.
 *                If this succeeds, it must be set again.
 *      XPT_CLOSE:
 *              - Can set at any time. It is never cleared.
 *      XPT_DEAD:
 *              - Can only be set while XPT_BUSY is held which ensures
 *                that no other thread will be using the transport or will
 *                try to set XPT_DEAD.
 */

int svc_reg_xprt_class(struct svc_xprt_class *xcl)
{
        struct svc_xprt_class *cl;
        int res = -EEXIST;

        dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);

        INIT_LIST_HEAD(&xcl->xcl_list);
        spin_lock(&svc_xprt_class_lock);
        /* Make sure there isn't already a class with the same name */
        list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
                if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
                        goto out;
        }
        list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
        res = 0;
out:
        spin_unlock(&svc_xprt_class_lock);
        return res;
}
EXPORT_SYMBOL_GPL(svc_reg_xprt_class);

void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
{
        dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
        spin_lock(&svc_xprt_class_lock);
        list_del_init(&xcl->xcl_list);
        spin_unlock(&svc_xprt_class_lock);
}
EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);

/*
 * Format the transport list for printing
 */
int svc_print_xprts(char *buf, int maxlen)
{
        struct list_head *le;
        char tmpstr[80];
        int len = 0;
        buf[0] = '\0';

        spin_lock(&svc_xprt_class_lock);
        list_for_each(le, &svc_xprt_class_list) {
                int slen;
                struct svc_xprt_class *xcl =
                        list_entry(le, struct svc_xprt_class, xcl_list);

                sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
                slen = strlen(tmpstr);
                if (len + slen > maxlen)
                        break;
                len += slen;
                strcat(buf, tmpstr);
        }
        spin_unlock(&svc_xprt_class_lock);

        return len;
}

static void svc_xprt_free(struct kref *kref)
{
        struct svc_xprt *xprt =
                container_of(kref, struct svc_xprt, xpt_ref);
        struct module *owner = xprt->xpt_class->xcl_owner;
        if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
            && xprt->xpt_auth_cache != NULL)
                svcauth_unix_info_release(xprt->xpt_auth_cache);
        xprt->xpt_ops->xpo_free(xprt);
        module_put(owner);
}

void svc_xprt_put(struct svc_xprt *xprt)
{
        kref_put(&xprt->xpt_ref, svc_xprt_free);
}
EXPORT_SYMBOL_GPL(svc_xprt_put);

/*
 * Called by transport drivers to initialize the transport independent
 * portion of the transport instance.
 */
void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
                   struct svc_serv *serv)
{
        memset(xprt, 0, sizeof(*xprt));
        xprt->xpt_class = xcl;
        xprt->xpt_ops = xcl->xcl_ops;
        kref_init(&xprt->xpt_ref);
        xprt->xpt_server = serv;
        INIT_LIST_HEAD(&xprt->xpt_list);
        INIT_LIST_HEAD(&xprt->xpt_ready);
        INIT_LIST_HEAD(&xprt->xpt_deferred);
        mutex_init(&xprt->xpt_mutex);
        spin_lock_init(&xprt->xpt_lock);
        set_bit(XPT_BUSY, &xprt->xpt_flags);
}
EXPORT_SYMBOL_GPL(svc_xprt_init);

static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
                                         struct svc_serv *serv,
                                         unsigned short port, int flags)
{
        struct sockaddr_in sin = {
                .sin_family             = AF_INET,
                .sin_addr.s_addr        = htonl(INADDR_ANY),
                .sin_port               = htons(port),
        };
        struct sockaddr_in6 sin6 = {
                .sin6_family            = AF_INET6,
                .sin6_addr              = IN6ADDR_ANY_INIT,
                .sin6_port              = htons(port),
        };
        struct sockaddr *sap;
        size_t len;

        switch (serv->sv_family) {
        case AF_INET:
                sap = (struct sockaddr *)&sin;
                len = sizeof(sin);
                break;
        case AF_INET6:
                sap = (struct sockaddr *)&sin6;
                len = sizeof(sin6);
                break;
        default:
                return ERR_PTR(-EAFNOSUPPORT);
        }

        return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
}

int svc_create_xprt(struct svc_serv *serv, char *xprt_name, unsigned short port,
                    int flags)
{
        struct svc_xprt_class *xcl;

        dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
        spin_lock(&svc_xprt_class_lock);
        list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
                struct svc_xprt *newxprt;

                if (strcmp(xprt_name, xcl->xcl_name))
                        continue;

                if (!try_module_get(xcl->xcl_owner))
                        goto err;

                spin_unlock(&svc_xprt_class_lock);
                newxprt = __svc_xpo_create(xcl, serv, port, flags);
                if (IS_ERR(newxprt)) {
                        module_put(xcl->xcl_owner);
                        return PTR_ERR(newxprt);
                }

                clear_bit(XPT_TEMP, &newxprt->xpt_flags);
                spin_lock_bh(&serv->sv_lock);
                list_add(&newxprt->xpt_list, &serv->sv_permsocks);
                spin_unlock_bh(&serv->sv_lock);
                clear_bit(XPT_BUSY, &newxprt->xpt_flags);
                return svc_xprt_local_port(newxprt);
        }
 err:
        spin_unlock(&svc_xprt_class_lock);
        dprintk("svc: transport %s not found\n", xprt_name);
        return -ENOENT;
}
EXPORT_SYMBOL_GPL(svc_create_xprt);

/*
 * Copy the local and remote xprt addresses to the rqstp structure
 */
void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
{
        struct sockaddr *sin;

        memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
        rqstp->rq_addrlen = xprt->xpt_remotelen;

        /*
         * Destination address in request is needed for binding the
         * source address in RPC replies/callbacks later.
         */
        sin = (struct sockaddr *)&xprt->xpt_local;
        switch (sin->sa_family) {
        case AF_INET:
                rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
                break;
        case AF_INET6:
                rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
                break;
        }
}
EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);

/**
 * svc_print_addr - Format rq_addr field for printing
 * @rqstp: svc_rqst struct containing address to print
 * @buf: target buffer for formatted address
 * @len: length of target buffer
 *
 */
char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
{
        return __svc_print_addr(svc_addr(rqstp), buf, len);
}
EXPORT_SYMBOL_GPL(svc_print_addr);

/*
 * Queue up an idle server thread.  Must have pool->sp_lock held.
 * Note: this is really a stack rather than a queue, so that we only
 * use as many different threads as we need, and the rest don't pollute
 * the cache.
 */
static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
{
        list_add(&rqstp->rq_list, &pool->sp_threads);
}

/*
 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
 */
static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
{
        list_del(&rqstp->rq_list);
}

/*
 * Queue up a transport with data pending. If there are idle nfsd
 * processes, wake 'em up.
 *
 */
void svc_xprt_enqueue(struct svc_xprt *xprt)
{
        struct svc_serv *serv = xprt->xpt_server;
        struct svc_pool *pool;
        struct svc_rqst *rqstp;
        int cpu;

        if (!(xprt->xpt_flags &
              ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
                return;

        cpu = get_cpu();
        pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
        put_cpu();

        spin_lock_bh(&pool->sp_lock);

        if (!list_empty(&pool->sp_threads) &&
            !list_empty(&pool->sp_sockets))
                printk(KERN_ERR
                       "svc_xprt_enqueue: "
                       "threads and transports both waiting??\n");

        if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
                /* Don't enqueue dead transports */
                dprintk("svc: transport %p is dead, not enqueued\n", xprt);
                goto out_unlock;
        }

        /* Mark transport as busy. It will remain in this state until
         * the provider calls svc_xprt_received. We update XPT_BUSY
         * atomically because it also guards against trying to enqueue
         * the transport twice.
         */
        if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
                /* Don't enqueue transport while already enqueued */
                dprintk("svc: transport %p busy, not enqueued\n", xprt);
                goto out_unlock;
        }
        BUG_ON(xprt->xpt_pool != NULL);
        xprt->xpt_pool = pool;

        /* Handle pending connection */
        if (test_bit(XPT_CONN, &xprt->xpt_flags))
                goto process;

        /* Handle close in-progress */
        if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
                goto process;

        /* Check if we have space to reply to a request */
        if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
                /* Don't enqueue while not enough space for reply */
                dprintk("svc: no write space, transport %p  not enqueued\n",
                        xprt);
                xprt->xpt_pool = NULL;
                clear_bit(XPT_BUSY, &xprt->xpt_flags);
                goto out_unlock;
        }

 process:
        if (!list_empty(&pool->sp_threads)) {
                rqstp = list_entry(pool->sp_threads.next,
                                   struct svc_rqst,
                                   rq_list);
                dprintk("svc: transport %p served by daemon %p\n",
                        xprt, rqstp);
                svc_thread_dequeue(pool, rqstp);
                if (rqstp->rq_xprt)
                        printk(KERN_ERR
                                "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
                                rqstp, rqstp->rq_xprt);
                rqstp->rq_xprt = xprt;
                svc_xprt_get(xprt);
                rqstp->rq_reserved = serv->sv_max_mesg;
                atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
                BUG_ON(xprt->xpt_pool != pool);
                wake_up(&rqstp->rq_wait);
        } else {
                dprintk("svc: transport %p put into queue\n", xprt);
                list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
                BUG_ON(xprt->xpt_pool != pool);
        }

out_unlock:
        spin_unlock_bh(&pool->sp_lock);
}
EXPORT_SYMBOL_GPL(svc_xprt_enqueue);

/*
 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
 */
static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
{
        struct svc_xprt *xprt;

        if (list_empty(&pool->sp_sockets))
                return NULL;

        xprt = list_entry(pool->sp_sockets.next,
                          struct svc_xprt, xpt_ready);
        list_del_init(&xprt->xpt_ready);

        dprintk("svc: transport %p dequeued, inuse=%d\n",
                xprt, atomic_read(&xprt->xpt_ref.refcount));

        return xprt;
}

/*
 * svc_xprt_received conditionally queues the transport for processing
 * by another thread. The caller must hold the XPT_BUSY bit and must
 * not thereafter touch transport data.
 *
 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 * insufficient) data.
 */
void svc_xprt_received(struct svc_xprt *xprt)
{
        BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
        xprt->xpt_pool = NULL;
        clear_bit(XPT_BUSY, &xprt->xpt_flags);
        svc_xprt_enqueue(xprt);
}
EXPORT_SYMBOL_GPL(svc_xprt_received);

/**
 * svc_reserve - change the space reserved for the reply to a request.
 * @rqstp:  The request in question
 * @space: new max space to reserve
 *
 * Each request reserves some space on the output queue of the transport
 * to make sure the reply fits.  This function reduces that reserved
 * space to be the amount of space used already, plus @space.
 *
 */
void svc_reserve(struct svc_rqst *rqstp, int space)
{
        space += rqstp->rq_res.head[0].iov_len;

        if (space < rqstp->rq_reserved) {
                struct svc_xprt *xprt = rqstp->rq_xprt;
                atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
                rqstp->rq_reserved = space;

                svc_xprt_enqueue(xprt);
        }
}
EXPORT_SYMBOL(svc_reserve);

static void svc_xprt_release(struct svc_rqst *rqstp)
{
        struct svc_xprt *xprt = rqstp->rq_xprt;

        rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);

        svc_free_res_pages(rqstp);
        rqstp->rq_res.page_len = 0;
        rqstp->rq_res.page_base = 0;

        /* Reset response buffer and release
         * the reservation.
         * But first, check that enough space was reserved
         * for the reply, otherwise we have a bug!
         */
        if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
                printk(KERN_ERR "RPC request reserved %d but used %d\n",
                       rqstp->rq_reserved,
                       rqstp->rq_res.len);

        rqstp->rq_res.head[0].iov_len = 0;
        svc_reserve(rqstp, 0);
        rqstp->rq_xprt = NULL;

        svc_xprt_put(xprt);
}

/*
 * External function to wake up a server waiting for data
 * This really only makes sense for services like lockd
 * which have exactly one thread anyway.
 */
void svc_wake_up(struct svc_serv *serv)
{
        struct svc_rqst *rqstp;
        unsigned int i;
        struct svc_pool *pool;

        for (i = 0; i < serv->sv_nrpools; i++) {
                pool = &serv->sv_pools[i];

                spin_lock_bh(&pool->sp_lock);
                if (!list_empty(&pool->sp_threads)) {
                        rqstp = list_entry(pool->sp_threads.next,
                                           struct svc_rqst,
                                           rq_list);
                        dprintk("svc: daemon %p woken up.\n", rqstp);
                        /*
                        svc_thread_dequeue(pool, rqstp);
                        rqstp->rq_xprt = NULL;
                         */
                        wake_up(&rqstp->rq_wait);
                }
                spin_unlock_bh(&pool->sp_lock);
        }
}
EXPORT_SYMBOL(svc_wake_up);

int svc_port_is_privileged(struct sockaddr *sin)
{
        switch (sin->sa_family) {
        case AF_INET:
                return ntohs(((struct sockaddr_in *)sin)->sin_port)
                        < PROT_SOCK;
        case AF_INET6:
                return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
                        < PROT_SOCK;
        default:
                return 0;
        }
}

/*
 * Make sure that we don't have too many active connections.  If we
 * have, something must be dropped.
 *
 * There's no point in trying to do random drop here for DoS
 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 * attacker can easily beat that.
 *
 * The only somewhat efficient mechanism would be if drop old
 * connections from the same IP first. But right now we don't even
 * record the client IP in svc_sock.
 */
static void svc_check_conn_limits(struct svc_serv *serv)
{
        if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
                struct svc_xprt *xprt = NULL;
                spin_lock_bh(&serv->sv_lock);
                if (!list_empty(&serv->sv_tempsocks)) {
                        if (net_ratelimit()) {
                                /* Try to help the admin */
                                printk(KERN_NOTICE "%s: too many open  "
                                       "connections, consider increasing the "
                                       "number of nfsd threads\n",
                                       serv->sv_name);
                        }
                        /*
                         * Always select the oldest connection. It's not fair,
                         * but so is life
                         */
                        xprt = list_entry(serv->sv_tempsocks.prev,
                                          struct svc_xprt,
                                          xpt_list);
                        set_bit(XPT_CLOSE, &xprt->xpt_flags);
                        svc_xprt_get(xprt);
                }
                spin_unlock_bh(&serv->sv_lock);

                if (xprt) {
                        svc_xprt_enqueue(xprt);
                        svc_xprt_put(xprt);
                }
        }
}

/*
 * Receive the next request on any transport.  This code is carefully
 * organised not to touch any cachelines in the shared svc_serv
 * structure, only cachelines in the local svc_pool.
 */
int svc_recv(struct svc_rqst *rqstp, long timeout)
{
        struct svc_xprt         *xprt = NULL;
        struct svc_serv         *serv = rqstp->rq_server;
        struct svc_pool         *pool = rqstp->rq_pool;
        int                     len, i;
        int                     pages;
        struct xdr_buf          *arg;
        DECLARE_WAITQUEUE(wait, current);

        dprintk("svc: server %p waiting for data (to = %ld)\n",
                rqstp, timeout);

        if (rqstp->rq_xprt)
                printk(KERN_ERR
                        "svc_recv: service %p, transport not NULL!\n",
                         rqstp);
        if (waitqueue_active(&rqstp->rq_wait))
                printk(KERN_ERR
                        "svc_recv: service %p, wait queue active!\n",
                         rqstp);

        /* now allocate needed pages.  If we get a failure, sleep briefly */
        pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
        for (i = 0; i < pages ; i++)
                while (rqstp->rq_pages[i] == NULL) {
                        struct page *p = alloc_page(GFP_KERNEL);
                        if (!p) {
                                set_current_state(TASK_INTERRUPTIBLE);
                                if (signalled() || kthread_should_stop()) {
                                        set_current_state(TASK_RUNNING);
                                        return -EINTR;
                                }
                                schedule_timeout(msecs_to_jiffies(500));
                        }
                        rqstp->rq_pages[i] = p;
                }
        rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
        BUG_ON(pages >= RPCSVC_MAXPAGES);

        /* Make arg->head point to first page and arg->pages point to rest */
        arg = &rqstp->rq_arg;
        arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
        arg->head[0].iov_len = PAGE_SIZE;
        arg->pages = rqstp->rq_pages + 1;
        arg->page_base = 0;
        /* save at least one page for response */
        arg->page_len = (pages-2)*PAGE_SIZE;
        arg->len = (pages-1)*PAGE_SIZE;
        arg->tail[0].iov_len = 0;

        try_to_freeze();
        cond_resched();
        if (signalled() || kthread_should_stop())
                return -EINTR;

        spin_lock_bh(&pool->sp_lock);
        xprt = svc_xprt_dequeue(pool);
        if (xprt) {
                rqstp->rq_xprt = xprt;
                svc_xprt_get(xprt);
                rqstp->rq_reserved = serv->sv_max_mesg;
                atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
        } else {
                /* No data pending. Go to sleep */
                svc_thread_enqueue(pool, rqstp);

                /*
                 * We have to be able to interrupt this wait
                 * to bring down the daemons ...
                 */
                set_current_state(TASK_INTERRUPTIBLE);

                /*
                 * checking kthread_should_stop() here allows us to avoid
                 * locking and signalling when stopping kthreads that call
                 * svc_recv. If the thread has already been woken up, then
                 * we can exit here without sleeping. If not, then it
                 * it'll be woken up quickly during the schedule_timeout
                 */
                if (kthread_should_stop()) {
                        set_current_state(TASK_RUNNING);
                        spin_unlock_bh(&pool->sp_lock);
                        return -EINTR;
                }

                add_wait_queue(&rqstp->rq_wait, &wait);
                spin_unlock_bh(&pool->sp_lock);

                schedule_timeout(timeout);

                try_to_freeze();

                spin_lock_bh(&pool->sp_lock);
                remove_wait_queue(&rqstp->rq_wait, &wait);

                xprt = rqstp->rq_xprt;
                if (!xprt) {
                        svc_thread_dequeue(pool, rqstp);
                        spin_unlock_bh(&pool->sp_lock);
                        dprintk("svc: server %p, no data yet\n", rqstp);
                        if (signalled() || kthread_should_stop())
                                return -EINTR;
                        else
                                return -EAGAIN;
                }
        }
        spin_unlock_bh(&pool->sp_lock);

        len = 0;
        if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
                dprintk("svc_recv: found XPT_CLOSE\n");
                svc_delete_xprt(xprt);
        } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
                struct svc_xprt *newxpt;
                newxpt = xprt->xpt_ops->xpo_accept(xprt);
                if (newxpt) {
                        /*
                         * We know this module_get will succeed because the
                         * listener holds a reference too
                         */
                        __module_get(newxpt->xpt_class->xcl_owner);
                        svc_check_conn_limits(xprt->xpt_server);
                        spin_lock_bh(&serv->sv_lock);
                        set_bit(XPT_TEMP, &newxpt->xpt_flags);
                        list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
                        serv->sv_tmpcnt++;
                        if (serv->sv_temptimer.function == NULL) {
                                /* setup timer to age temp transports */
                                setup_timer(&serv->sv_temptimer,
                                            svc_age_temp_xprts,
                                            (unsigned long)serv);
                                mod_timer(&serv->sv_temptimer,
                                          jiffies + svc_conn_age_period * HZ);
                        }
                        spin_unlock_bh(&serv->sv_lock);
                        svc_xprt_received(newxpt);
                }
                svc_xprt_received(xprt);
        } else {
                dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
                        rqstp, pool->sp_id, xprt,
                        atomic_read(&xprt->xpt_ref.refcount));
                rqstp->rq_deferred = svc_deferred_dequeue(xprt);
                if (rqstp->rq_deferred) {
                        svc_xprt_received(xprt);
                        len = svc_deferred_recv(rqstp);
                } else
                        len = xprt->xpt_ops->xpo_recvfrom(rqstp);
                dprintk("svc: got len=%d\n", len);
        }

        /* No data, incomplete (TCP) read, or accept() */
        if (len == 0 || len == -EAGAIN) {
                rqstp->rq_res.len = 0;
                svc_xprt_release(rqstp);
                return -EAGAIN;
        }
        clear_bit(XPT_OLD, &xprt->xpt_flags);

        rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
        rqstp->rq_chandle.defer = svc_defer;

        if (serv->sv_stats)
                serv->sv_stats->netcnt++;
        return len;
}
EXPORT_SYMBOL(svc_recv);

/*
 * Drop request
 */
void svc_drop(struct svc_rqst *rqstp)
{
        dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
        svc_xprt_release(rqstp);
}
EXPORT_SYMBOL(svc_drop);

/*
 * Return reply to client.
 */
int svc_send(struct svc_rqst *rqstp)
{
        struct svc_xprt *xprt;
        int             len;
        struct xdr_buf  *xb;

        xprt = rqstp->rq_xprt;
        if (!xprt)
                return -EFAULT;

        /* release the receive skb before sending the reply */
        rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);

        /* calculate over-all length */
        xb = &rqstp->rq_res;
        xb->len = xb->head[0].iov_len +
                xb->page_len +
                xb->tail[0].iov_len;

        /* Grab mutex to serialize outgoing data. */
        mutex_lock(&xprt->xpt_mutex);
        if (test_bit(XPT_DEAD, &xprt->xpt_flags))
                len = -ENOTCONN;
        else
                len = xprt->xpt_ops->xpo_sendto(rqstp);
        mutex_unlock(&xprt->xpt_mutex);
        svc_xprt_release(rqstp);

        if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
                return 0;
        return len;
}

/*
 * Timer function to close old temporary transports, using
 * a mark-and-sweep algorithm.
 */
static void svc_age_temp_xprts(unsigned long closure)
{
        struct svc_serv *serv = (struct svc_serv *)closure;
        struct svc_xprt *xprt;
        struct list_head *le, *next;
        LIST_HEAD(to_be_aged);

        dprintk("svc_age_temp_xprts\n");

        if (!spin_trylock_bh(&serv->sv_lock)) {
                /* busy, try again 1 sec later */
                dprintk("svc_age_temp_xprts: busy\n");
                mod_timer(&serv->sv_temptimer, jiffies + HZ);
                return;
        }

        list_for_each_safe(le, next, &serv->sv_tempsocks) {
                xprt = list_entry(le, struct svc_xprt, xpt_list);

                /* First time through, just mark it OLD. Second time
                 * through, close it. */
                if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
                        continue;
                if (atomic_read(&xprt->xpt_ref.refcount) > 1
                    || test_bit(XPT_BUSY, &xprt->xpt_flags))
                        continue;
                svc_xprt_get(xprt);
                list_move(le, &to_be_aged);
                set_bit(XPT_CLOSE, &xprt->xpt_flags);
                set_bit(XPT_DETACHED, &xprt->xpt_flags);
        }
        spin_unlock_bh(&serv->sv_lock);

        while (!list_empty(&to_be_aged)) {
                le = to_be_aged.next;
                /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
                list_del_init(le);
                xprt = list_entry(le, struct svc_xprt, xpt_list);

                dprintk("queuing xprt %p for closing\n", xprt);

                /* a thread will dequeue and close it soon */
                svc_xprt_enqueue(xprt);
                svc_xprt_put(xprt);
        }

        mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
}

/*
 * Remove a dead transport
 */
void svc_delete_xprt(struct svc_xprt *xprt)
{
        struct svc_serv *serv = xprt->xpt_server;

        dprintk("svc: svc_delete_xprt(%p)\n", xprt);
        xprt->xpt_ops->xpo_detach(xprt);

        spin_lock_bh(&serv->sv_lock);
        if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
                list_del_init(&xprt->xpt_list);
        /*
         * We used to delete the transport from whichever list
         * it's sk_xprt.xpt_ready node was on, but we don't actually
         * need to.  This is because the only time we're called
         * while still attached to a queue, the queue itself
         * is about to be destroyed (in svc_destroy).
         */
        if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
                BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
                if (test_bit(XPT_TEMP, &xprt->xpt_flags))
                        serv->sv_tmpcnt--;
                svc_xprt_put(xprt);
        }
        spin_unlock_bh(&serv->sv_lock);
}

void svc_close_xprt(struct svc_xprt *xprt)
{
        set_bit(XPT_CLOSE, &xprt->xpt_flags);
        if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
                /* someone else will have to effect the close */
                return;

        svc_xprt_get(xprt);
        svc_delete_xprt(xprt);
        clear_bit(XPT_BUSY, &xprt->xpt_flags);
        svc_xprt_put(xprt);
}
EXPORT_SYMBOL_GPL(svc_close_xprt);

void svc_close_all(struct list_head *xprt_list)
{
        struct svc_xprt *xprt;
        struct svc_xprt *tmp;

        list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
                set_bit(XPT_CLOSE, &xprt->xpt_flags);
                if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
                        /* Waiting to be processed, but no threads left,
                         * So just remove it from the waiting list
                         */
                        list_del_init(&xprt->xpt_ready);
                        clear_bit(XPT_BUSY, &xprt->xpt_flags);
                }
                svc_close_xprt(xprt);
        }
}

/*
 * Handle defer and revisit of requests
 */

static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
{
        struct svc_deferred_req *dr =
                container_of(dreq, struct svc_deferred_req, handle);
        struct svc_xprt *xprt = dr->xprt;

        if (too_many) {
                svc_xprt_put(xprt);
                kfree(dr);
                return;
        }
        dprintk("revisit queued\n");
        dr->xprt = NULL;
        spin_lock(&xprt->xpt_lock);
        list_add(&dr->handle.recent, &xprt->xpt_deferred);
        spin_unlock(&xprt->xpt_lock);
        set_bit(XPT_DEFERRED, &xprt->xpt_flags);
        svc_xprt_enqueue(xprt);
        svc_xprt_put(xprt);
}

/*
 * Save the request off for later processing. The request buffer looks
 * like this:
 *
 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
 *
 * This code can only handle requests that consist of an xprt-header
 * and rpc-header.
 */
static struct cache_deferred_req *svc_defer(struct cache_req *req)
{
        struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
        struct svc_deferred_req *dr;

        if (rqstp->rq_arg.page_len)
                return NULL; /* if more than a page, give up FIXME */
        if (rqstp->rq_deferred) {
                dr = rqstp->rq_deferred;
                rqstp->rq_deferred = NULL;
        } else {
                size_t skip;
                size_t size;
                /* FIXME maybe discard if size too large */
                size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
                dr = kmalloc(size, GFP_KERNEL);
                if (dr == NULL)
                        return NULL;

                dr->handle.owner = rqstp->rq_server;
                dr->prot = rqstp->rq_prot;
                memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
                dr->addrlen = rqstp->rq_addrlen;
                dr->daddr = rqstp->rq_daddr;
                dr->argslen = rqstp->rq_arg.len >> 2;
                dr->xprt_hlen = rqstp->rq_xprt_hlen;

                /* back up head to the start of the buffer and copy */
                skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
                memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
                       dr->argslen << 2);
        }
        svc_xprt_get(rqstp->rq_xprt);
        dr->xprt = rqstp->rq_xprt;

        dr->handle.revisit = svc_revisit;
        return &dr->handle;
}

/*
 * recv data from a deferred request into an active one
 */
static int svc_deferred_recv(struct svc_rqst *rqstp)
{
        struct svc_deferred_req *dr = rqstp->rq_deferred;

        /* setup iov_base past transport header */
        rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
        /* The iov_len does not include the transport header bytes */
        rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
        rqstp->rq_arg.page_len = 0;
        /* The rq_arg.len includes the transport header bytes */
        rqstp->rq_arg.len     = dr->argslen<<2;
        rqstp->rq_prot        = dr->prot;
        memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
        rqstp->rq_addrlen     = dr->addrlen;
        /* Save off transport header len in case we get deferred again */
        rqstp->rq_xprt_hlen   = dr->xprt_hlen;
        rqstp->rq_daddr       = dr->daddr;
        rqstp->rq_respages    = rqstp->rq_pages;
        return (dr->argslen<<2) - dr->xprt_hlen;
}


static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
{
        struct svc_deferred_req *dr = NULL;

        if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
                return NULL;
        spin_lock(&xprt->xpt_lock);
        clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
        if (!list_empty(&xprt->xpt_deferred)) {
                dr = list_entry(xprt->xpt_deferred.next,
                                struct svc_deferred_req,
                                handle.recent);
                list_del_init(&dr->handle.recent);
                set_bit(XPT_DEFERRED, &xprt->xpt_flags);
        }
        spin_unlock(&xprt->xpt_lock);
        return dr;
}

/*
 * Return the transport instance pointer for the endpoint accepting
 * connections/peer traffic from the specified transport class,
 * address family and port.
 *
 * Specifying 0 for the address family or port is effectively a
 * wild-card, and will result in matching the first transport in the
 * service's list that has a matching class name.
 */
struct svc_xprt *svc_find_xprt(struct svc_serv *serv, char *xcl_name,
                               int af, int port)
{
        struct svc_xprt *xprt;
        struct svc_xprt *found = NULL;

        /* Sanity check the args */
        if (!serv || !xcl_name)
                return found;

        spin_lock_bh(&serv->sv_lock);
        list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
                if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
                        continue;
                if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
                        continue;
                if (port && port != svc_xprt_local_port(xprt))
                        continue;
                found = xprt;
                svc_xprt_get(xprt);
                break;
        }
        spin_unlock_bh(&serv->sv_lock);
        return found;
}
EXPORT_SYMBOL_GPL(svc_find_xprt);

/*
 * Format a buffer with a list of the active transports. A zero for
 * the buflen parameter disables target buffer overflow checking.
 */
int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen)
{
        struct svc_xprt *xprt;
        char xprt_str[64];
        int totlen = 0;
        int len;

        /* Sanity check args */
        if (!serv)
                return 0;

        spin_lock_bh(&serv->sv_lock);
        list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
                len = snprintf(xprt_str, sizeof(xprt_str),
                               "%s %d\n", xprt->xpt_class->xcl_name,
                               svc_xprt_local_port(xprt));
                /* If the string was truncated, replace with error string */
                if (len >= sizeof(xprt_str))
                        strcpy(xprt_str, "name-too-long\n");
                /* Don't overflow buffer */
                len = strlen(xprt_str);
                if (buflen && (len + totlen >= buflen))
                        break;
                strcpy(buf+totlen, xprt_str);
                totlen += len;
        }
        spin_unlock_bh(&serv->sv_lock);
        return totlen;
}
EXPORT_SYMBOL_GPL(svc_xprt_names);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading