[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kernel/irq_32.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ack_bad_irq
  2. check_stack_overflow
  3. print_stack_overflow
  4. check_stack_overflow
  5. print_stack_overflow
  6. call_on_stack
  7. execute_on_irq_stack
  8. irq_ctx_init
  9. irq_ctx_exit
  10. do_softirq
  11. execute_on_irq_stack
  12. do_IRQ
  13. show_interrupts
  14. arch_irq_stat_cpu
  15. arch_irq_stat
  16. fixup_irqs

/*
 *      Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
 *
 * This file contains the lowest level x86-specific interrupt
 * entry, irq-stacks and irq statistics code. All the remaining
 * irq logic is done by the generic kernel/irq/ code and
 * by the x86-specific irq controller code. (e.g. i8259.c and
 * io_apic.c.)
 */

#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/delay.h>

#include <asm/apic.h>
#include <asm/uaccess.h>

DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
EXPORT_PER_CPU_SYMBOL(irq_stat);

DEFINE_PER_CPU(struct pt_regs *, irq_regs);
EXPORT_PER_CPU_SYMBOL(irq_regs);

/*
 * 'what should we do if we get a hw irq event on an illegal vector'.
 * each architecture has to answer this themselves.
 */
void ack_bad_irq(unsigned int irq)
{
        printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);

#ifdef CONFIG_X86_LOCAL_APIC
        /*
         * Currently unexpected vectors happen only on SMP and APIC.
         * We _must_ ack these because every local APIC has only N
         * irq slots per priority level, and a 'hanging, unacked' IRQ
         * holds up an irq slot - in excessive cases (when multiple
         * unexpected vectors occur) that might lock up the APIC
         * completely.
         * But only ack when the APIC is enabled -AK
         */
        if (cpu_has_apic)
                ack_APIC_irq();
#endif
}

#ifdef CONFIG_DEBUG_STACKOVERFLOW
/* Debugging check for stack overflow: is there less than 1KB free? */
static int check_stack_overflow(void)
{
        long sp;

        __asm__ __volatile__("andl %%esp,%0" :
                             "=r" (sp) : "0" (THREAD_SIZE - 1));

        return sp < (sizeof(struct thread_info) + STACK_WARN);
}

static void print_stack_overflow(void)
{
        printk(KERN_WARNING "low stack detected by irq handler\n");
        dump_stack();
}

#else
static inline int check_stack_overflow(void) { return 0; }
static inline void print_stack_overflow(void) { }
#endif

#ifdef CONFIG_4KSTACKS
/*
 * per-CPU IRQ handling contexts (thread information and stack)
 */
union irq_ctx {
        struct thread_info      tinfo;
        u32                     stack[THREAD_SIZE/sizeof(u32)];
};

static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;

static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;

static void call_on_stack(void *func, void *stack)
{
        asm volatile("xchgl     %%ebx,%%esp     \n"
                     "call      *%%edi          \n"
                     "movl      %%ebx,%%esp     \n"
                     : "=b" (stack)
                     : "0" (stack),
                       "D"(func)
                     : "memory", "cc", "edx", "ecx", "eax");
}

static inline int
execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
{
        union irq_ctx *curctx, *irqctx;
        u32 *isp, arg1, arg2;

        curctx = (union irq_ctx *) current_thread_info();
        irqctx = hardirq_ctx[smp_processor_id()];

        /*
         * this is where we switch to the IRQ stack. However, if we are
         * already using the IRQ stack (because we interrupted a hardirq
         * handler) we can't do that and just have to keep using the
         * current stack (which is the irq stack already after all)
         */
        if (unlikely(curctx == irqctx))
                return 0;

        /* build the stack frame on the IRQ stack */
        isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
        irqctx->tinfo.task = curctx->tinfo.task;
        irqctx->tinfo.previous_esp = current_stack_pointer;

        /*
         * Copy the softirq bits in preempt_count so that the
         * softirq checks work in the hardirq context.
         */
        irqctx->tinfo.preempt_count =
                (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
                (curctx->tinfo.preempt_count & SOFTIRQ_MASK);

        if (unlikely(overflow))
                call_on_stack(print_stack_overflow, isp);

        asm volatile("xchgl     %%ebx,%%esp     \n"
                     "call      *%%edi          \n"
                     "movl      %%ebx,%%esp     \n"
                     : "=a" (arg1), "=d" (arg2), "=b" (isp)
                     :  "0" (irq),   "1" (desc),  "2" (isp),
                        "D" (desc->handle_irq)
                     : "memory", "cc", "ecx");
        return 1;
}

/*
 * allocate per-cpu stacks for hardirq and for softirq processing
 */
void __cpuinit irq_ctx_init(int cpu)
{
        union irq_ctx *irqctx;

        if (hardirq_ctx[cpu])
                return;

        irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
        irqctx->tinfo.task              = NULL;
        irqctx->tinfo.exec_domain       = NULL;
        irqctx->tinfo.cpu               = cpu;
        irqctx->tinfo.preempt_count     = HARDIRQ_OFFSET;
        irqctx->tinfo.addr_limit        = MAKE_MM_SEG(0);

        hardirq_ctx[cpu] = irqctx;

        irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
        irqctx->tinfo.task              = NULL;
        irqctx->tinfo.exec_domain       = NULL;
        irqctx->tinfo.cpu               = cpu;
        irqctx->tinfo.preempt_count     = 0;
        irqctx->tinfo.addr_limit        = MAKE_MM_SEG(0);

        softirq_ctx[cpu] = irqctx;

        printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
               cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
}

void irq_ctx_exit(int cpu)
{
        hardirq_ctx[cpu] = NULL;
}

asmlinkage void do_softirq(void)
{
        unsigned long flags;
        struct thread_info *curctx;
        union irq_ctx *irqctx;
        u32 *isp;

        if (in_interrupt())
                return;

        local_irq_save(flags);

        if (local_softirq_pending()) {
                curctx = current_thread_info();
                irqctx = softirq_ctx[smp_processor_id()];
                irqctx->tinfo.task = curctx->task;
                irqctx->tinfo.previous_esp = current_stack_pointer;

                /* build the stack frame on the softirq stack */
                isp = (u32*) ((char*)irqctx + sizeof(*irqctx));

                call_on_stack(__do_softirq, isp);
                /*
                 * Shouldnt happen, we returned above if in_interrupt():
                 */
                WARN_ON_ONCE(softirq_count());
        }

        local_irq_restore(flags);
}

#else
static inline int
execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
#endif

/*
 * do_IRQ handles all normal device IRQ's (the special
 * SMP cross-CPU interrupts have their own specific
 * handlers).
 */
unsigned int do_IRQ(struct pt_regs *regs)
{
        struct pt_regs *old_regs;
        /* high bit used in ret_from_ code */
        int overflow, irq = ~regs->orig_ax;
        struct irq_desc *desc = irq_desc + irq;

        if (unlikely((unsigned)irq >= NR_IRQS)) {
                printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
                                        __func__, irq);
                BUG();
        }

        old_regs = set_irq_regs(regs);
        irq_enter();

        overflow = check_stack_overflow();

        if (!execute_on_irq_stack(overflow, desc, irq)) {
                if (unlikely(overflow))
                        print_stack_overflow();
                desc->handle_irq(irq, desc);
        }

        irq_exit();
        set_irq_regs(old_regs);
        return 1;
}

/*
 * Interrupt statistics:
 */

atomic_t irq_err_count;

/*
 * /proc/interrupts printing:
 */

int show_interrupts(struct seq_file *p, void *v)
{
        int i = *(loff_t *) v, j;
        struct irqaction * action;
        unsigned long flags;

        if (i == 0) {
                seq_printf(p, "           ");
                for_each_online_cpu(j)
                        seq_printf(p, "CPU%-8d",j);
                seq_putc(p, '\n');
        }

        if (i < NR_IRQS) {
                unsigned any_count = 0;

                spin_lock_irqsave(&irq_desc[i].lock, flags);
#ifndef CONFIG_SMP
                any_count = kstat_irqs(i);
#else
                for_each_online_cpu(j)
                        any_count |= kstat_cpu(j).irqs[i];
#endif
                action = irq_desc[i].action;
                if (!action && !any_count)
                        goto skip;
                seq_printf(p, "%3d: ",i);
#ifndef CONFIG_SMP
                seq_printf(p, "%10u ", kstat_irqs(i));
#else
                for_each_online_cpu(j)
                        seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
#endif
                seq_printf(p, " %8s", irq_desc[i].chip->name);
                seq_printf(p, "-%-8s", irq_desc[i].name);

                if (action) {
                        seq_printf(p, "  %s", action->name);
                        while ((action = action->next) != NULL)
                                seq_printf(p, ", %s", action->name);
                }

                seq_putc(p, '\n');
skip:
                spin_unlock_irqrestore(&irq_desc[i].lock, flags);
        } else if (i == NR_IRQS) {
                seq_printf(p, "NMI: ");
                for_each_online_cpu(j)
                        seq_printf(p, "%10u ", nmi_count(j));
                seq_printf(p, "  Non-maskable interrupts\n");
#ifdef CONFIG_X86_LOCAL_APIC
                seq_printf(p, "LOC: ");
                for_each_online_cpu(j)
                        seq_printf(p, "%10u ",
                                per_cpu(irq_stat,j).apic_timer_irqs);
                seq_printf(p, "  Local timer interrupts\n");
#endif
#ifdef CONFIG_SMP
                seq_printf(p, "RES: ");
                for_each_online_cpu(j)
                        seq_printf(p, "%10u ",
                                per_cpu(irq_stat,j).irq_resched_count);
                seq_printf(p, "  Rescheduling interrupts\n");
                seq_printf(p, "CAL: ");
                for_each_online_cpu(j)
                        seq_printf(p, "%10u ",
                                per_cpu(irq_stat,j).irq_call_count);
                seq_printf(p, "  Function call interrupts\n");
                seq_printf(p, "TLB: ");
                for_each_online_cpu(j)
                        seq_printf(p, "%10u ",
                                per_cpu(irq_stat,j).irq_tlb_count);
                seq_printf(p, "  TLB shootdowns\n");
#endif
#ifdef CONFIG_X86_MCE
                seq_printf(p, "TRM: ");
                for_each_online_cpu(j)
                        seq_printf(p, "%10u ",
                                per_cpu(irq_stat,j).irq_thermal_count);
                seq_printf(p, "  Thermal event interrupts\n");
#endif
#ifdef CONFIG_X86_LOCAL_APIC
                seq_printf(p, "SPU: ");
                for_each_online_cpu(j)
                        seq_printf(p, "%10u ",
                                per_cpu(irq_stat,j).irq_spurious_count);
                seq_printf(p, "  Spurious interrupts\n");
#endif
                seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
#if defined(CONFIG_X86_IO_APIC)
                seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
#endif
        }
        return 0;
}

/*
 * /proc/stat helpers
 */
u64 arch_irq_stat_cpu(unsigned int cpu)
{
        u64 sum = nmi_count(cpu);

#ifdef CONFIG_X86_LOCAL_APIC
        sum += per_cpu(irq_stat, cpu).apic_timer_irqs;
#endif
#ifdef CONFIG_SMP
        sum += per_cpu(irq_stat, cpu).irq_resched_count;
        sum += per_cpu(irq_stat, cpu).irq_call_count;
        sum += per_cpu(irq_stat, cpu).irq_tlb_count;
#endif
#ifdef CONFIG_X86_MCE
        sum += per_cpu(irq_stat, cpu).irq_thermal_count;
#endif
#ifdef CONFIG_X86_LOCAL_APIC
        sum += per_cpu(irq_stat, cpu).irq_spurious_count;
#endif
        return sum;
}

u64 arch_irq_stat(void)
{
        u64 sum = atomic_read(&irq_err_count);

#ifdef CONFIG_X86_IO_APIC
        sum += atomic_read(&irq_mis_count);
#endif
        return sum;
}

#ifdef CONFIG_HOTPLUG_CPU
#include <mach_apic.h>

void fixup_irqs(cpumask_t map)
{
        unsigned int irq;
        static int warned;

        for (irq = 0; irq < NR_IRQS; irq++) {
                cpumask_t mask;
                if (irq == 2)
                        continue;

                cpus_and(mask, irq_desc[irq].affinity, map);
                if (any_online_cpu(mask) == NR_CPUS) {
                        printk("Breaking affinity for irq %i\n", irq);
                        mask = map;
                }
                if (irq_desc[irq].chip->set_affinity)
                        irq_desc[irq].chip->set_affinity(irq, mask);
                else if (irq_desc[irq].action && !(warned++))
                        printk("Cannot set affinity for irq %i\n", irq);
        }

#if 0
        barrier();
        /* Ingo Molnar says: "after the IO-APIC masks have been redirected
           [note the nop - the interrupt-enable boundary on x86 is two
           instructions from sti] - to flush out pending hardirqs and
           IPIs. After this point nothing is supposed to reach this CPU." */
        __asm__ __volatile__("sti; nop; cli");
        barrier();
#else
        /* That doesn't seem sufficient.  Give it 1ms. */
        local_irq_enable();
        mdelay(1);
        local_irq_disable();
#endif
}
#endif


/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading