[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kernel/cpu/cpufreq/speedstep-lib.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pentium3_get_frequency
  2. pentiumM_get_frequency
  3. pentium_core_get_frequency
  4. pentium4_get_frequency
  5. speedstep_get_processor_frequency
  6. speedstep_detect_processor
  7. speedstep_get_freqs

/*
 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
 *
 *  Licensed under the terms of the GNU GPL License version 2.
 *
 *  Library for common functions for Intel SpeedStep v.1 and v.2 support
 *
 *  BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/slab.h>

#include <asm/msr.h>
#include "speedstep-lib.h"

#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "speedstep-lib", msg)

#ifdef CONFIG_X86_SPEEDSTEP_RELAXED_CAP_CHECK
static int relaxed_check = 0;
#else
#define relaxed_check 0
#endif

/*********************************************************************
 *                   GET PROCESSOR CORE SPEED IN KHZ                 *
 *********************************************************************/

static unsigned int pentium3_get_frequency (unsigned int processor)
{
        /* See table 14 of p3_ds.pdf and table 22 of 29834003.pdf */
        struct {
                unsigned int ratio;     /* Frequency Multiplier (x10) */
                u8 bitmap;              /* power on configuration bits
                                        [27, 25:22] (in MSR 0x2a) */
        } msr_decode_mult [] = {
                { 30, 0x01 },
                { 35, 0x05 },
                { 40, 0x02 },
                { 45, 0x06 },
                { 50, 0x00 },
                { 55, 0x04 },
                { 60, 0x0b },
                { 65, 0x0f },
                { 70, 0x09 },
                { 75, 0x0d },
                { 80, 0x0a },
                { 85, 0x26 },
                { 90, 0x20 },
                { 100, 0x2b },
                { 0, 0xff }     /* error or unknown value */
        };

        /* PIII(-M) FSB settings: see table b1-b of 24547206.pdf */
        struct {
                unsigned int value;     /* Front Side Bus speed in MHz */
                u8 bitmap;              /* power on configuration bits [18: 19]
                                        (in MSR 0x2a) */
        } msr_decode_fsb [] = {
                {  66, 0x0 },
                { 100, 0x2 },
                { 133, 0x1 },
                {   0, 0xff}
        };

        u32 msr_lo, msr_tmp;
        int i = 0, j = 0;

        /* read MSR 0x2a - we only need the low 32 bits */
        rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp);
        dprintk("P3 - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", msr_lo, msr_tmp);
        msr_tmp = msr_lo;

        /* decode the FSB */
        msr_tmp &= 0x00c0000;
        msr_tmp >>= 18;
        while (msr_tmp != msr_decode_fsb[i].bitmap) {
                if (msr_decode_fsb[i].bitmap == 0xff)
                        return 0;
                i++;
        }

        /* decode the multiplier */
        if (processor == SPEEDSTEP_PROCESSOR_PIII_C_EARLY) {
                dprintk("workaround for early PIIIs\n");
                msr_lo &= 0x03c00000;
        } else
                msr_lo &= 0x0bc00000;
        msr_lo >>= 22;
        while (msr_lo != msr_decode_mult[j].bitmap) {
                if (msr_decode_mult[j].bitmap == 0xff)
                        return 0;
                j++;
        }

        dprintk("speed is %u\n", (msr_decode_mult[j].ratio * msr_decode_fsb[i].value * 100));

        return (msr_decode_mult[j].ratio * msr_decode_fsb[i].value * 100);
}


static unsigned int pentiumM_get_frequency(void)
{
        u32 msr_lo, msr_tmp;

        rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp);
        dprintk("PM - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", msr_lo, msr_tmp);

        /* see table B-2 of 24547212.pdf */
        if (msr_lo & 0x00040000) {
                printk(KERN_DEBUG "speedstep-lib: PM - invalid FSB: 0x%x 0x%x\n", msr_lo, msr_tmp);
                return 0;
        }

        msr_tmp = (msr_lo >> 22) & 0x1f;
        dprintk("bits 22-26 are 0x%x, speed is %u\n", msr_tmp, (msr_tmp * 100 * 1000));

        return (msr_tmp * 100 * 1000);
}

static unsigned int pentium_core_get_frequency(void)
{
        u32 fsb = 0;
        u32 msr_lo, msr_tmp;

        rdmsr(MSR_FSB_FREQ, msr_lo, msr_tmp);
        /* see table B-2 of 25366920.pdf */
        switch (msr_lo & 0x07) {
        case 5:
                fsb = 100000;
                break;
        case 1:
                fsb = 133333;
                break;
        case 3:
                fsb = 166667;
                break;
        default:
                printk(KERN_ERR "PCORE - MSR_FSB_FREQ undefined value");
        }

        rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp);
        dprintk("PCORE - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", msr_lo, msr_tmp);

        msr_tmp = (msr_lo >> 22) & 0x1f;
        dprintk("bits 22-26 are 0x%x, speed is %u\n", msr_tmp, (msr_tmp * fsb));

        return (msr_tmp * fsb);
}


static unsigned int pentium4_get_frequency(void)
{
        struct cpuinfo_x86 *c = &boot_cpu_data;
        u32 msr_lo, msr_hi, mult;
        unsigned int fsb = 0;

        rdmsr(0x2c, msr_lo, msr_hi);

        dprintk("P4 - MSR_EBC_FREQUENCY_ID: 0x%x 0x%x\n", msr_lo, msr_hi);

        /* decode the FSB: see IA-32 Intel (C) Architecture Software
         * Developer's Manual, Volume 3: System Prgramming Guide,
         * revision #12 in Table B-1: MSRs in the Pentium 4 and
         * Intel Xeon Processors, on page B-4 and B-5.
         */
        if (c->x86_model < 2)
                fsb = 100 * 1000;
        else {
                u8 fsb_code = (msr_lo >> 16) & 0x7;
                switch (fsb_code) {
                case 0:
                        fsb = 100 * 1000;
                        break;
                case 1:
                        fsb = 13333 * 10;
                        break;
                case 2:
                        fsb = 200 * 1000;
                        break;
                }
        }

        if (!fsb)
                printk(KERN_DEBUG "speedstep-lib: couldn't detect FSB speed. Please send an e-mail to <linux@brodo.de>\n");

        /* Multiplier. */
        mult = msr_lo >> 24;

        dprintk("P4 - FSB %u kHz; Multiplier %u; Speed %u kHz\n", fsb, mult, (fsb * mult));

        return (fsb * mult);
}


unsigned int speedstep_get_processor_frequency(unsigned int processor)
{
        switch (processor) {
        case SPEEDSTEP_PROCESSOR_PCORE:
                return pentium_core_get_frequency();
        case SPEEDSTEP_PROCESSOR_PM:
                return pentiumM_get_frequency();
        case SPEEDSTEP_PROCESSOR_P4D:
        case SPEEDSTEP_PROCESSOR_P4M:
                return pentium4_get_frequency();
        case SPEEDSTEP_PROCESSOR_PIII_T:
        case SPEEDSTEP_PROCESSOR_PIII_C:
        case SPEEDSTEP_PROCESSOR_PIII_C_EARLY:
                return pentium3_get_frequency(processor);
        default:
                return 0;
        };
        return 0;
}
EXPORT_SYMBOL_GPL(speedstep_get_processor_frequency);


/*********************************************************************
 *                 DETECT SPEEDSTEP-CAPABLE PROCESSOR                *
 *********************************************************************/

unsigned int speedstep_detect_processor (void)
{
        struct cpuinfo_x86 *c = &cpu_data(0);
        u32 ebx, msr_lo, msr_hi;

        dprintk("x86: %x, model: %x\n", c->x86, c->x86_model);

        if ((c->x86_vendor != X86_VENDOR_INTEL) ||
            ((c->x86 != 6) && (c->x86 != 0xF)))
                return 0;

        if (c->x86 == 0xF) {
                /* Intel Mobile Pentium 4-M
                 * or Intel Mobile Pentium 4 with 533 MHz FSB */
                if (c->x86_model != 2)
                        return 0;

                ebx = cpuid_ebx(0x00000001);
                ebx &= 0x000000FF;

                dprintk("ebx value is %x, x86_mask is %x\n", ebx, c->x86_mask);

                switch (c->x86_mask) {
                case 4:
                        /*
                         * B-stepping [M-P4-M]
                         * sample has ebx = 0x0f, production has 0x0e.
                         */
                        if ((ebx == 0x0e) || (ebx == 0x0f))
                                return SPEEDSTEP_PROCESSOR_P4M;
                        break;
                case 7:
                        /*
                         * C-stepping [M-P4-M]
                         * needs to have ebx=0x0e, else it's a celeron:
                         * cf. 25130917.pdf / page 7, footnote 5 even
                         * though 25072120.pdf / page 7 doesn't say
                         * samples are only of B-stepping...
                         */
                        if (ebx == 0x0e)
                                return SPEEDSTEP_PROCESSOR_P4M;
                        break;
                case 9:
                        /*
                         * D-stepping [M-P4-M or M-P4/533]
                         *
                         * this is totally strange: CPUID 0x0F29 is
                         * used by M-P4-M, M-P4/533 and(!) Celeron CPUs.
                         * The latter need to be sorted out as they don't
                         * support speedstep.
                         * Celerons with CPUID 0x0F29 may have either
                         * ebx=0x8 or 0xf -- 25130917.pdf doesn't say anything
                         * specific.
                         * M-P4-Ms may have either ebx=0xe or 0xf [see above]
                         * M-P4/533 have either ebx=0xe or 0xf. [25317607.pdf]
                         * also, M-P4M HTs have ebx=0x8, too
                         * For now, they are distinguished by the model_id string
                         */
                        if ((ebx == 0x0e) || (strstr(c->x86_model_id,"Mobile Intel(R) Pentium(R) 4") != NULL))
                                return SPEEDSTEP_PROCESSOR_P4M;
                        break;
                default:
                        break;
                }
                return 0;
        }

        switch (c->x86_model) {
        case 0x0B: /* Intel PIII [Tualatin] */
                /* cpuid_ebx(1) is 0x04 for desktop PIII, 0x06 for mobile PIII-M */
                ebx = cpuid_ebx(0x00000001);
                dprintk("ebx is %x\n", ebx);

                ebx &= 0x000000FF;

                if (ebx != 0x06)
                        return 0;

                /* So far all PIII-M processors support SpeedStep. See
                 * Intel's 24540640.pdf of June 2003
                 */
                return SPEEDSTEP_PROCESSOR_PIII_T;

        case 0x08: /* Intel PIII [Coppermine] */

                /* all mobile PIII Coppermines have FSB 100 MHz
                 * ==> sort out a few desktop PIIIs. */
                rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_hi);
                dprintk("Coppermine: MSR_IA32_EBL_CR_POWERON is 0x%x, 0x%x\n", msr_lo, msr_hi);
                msr_lo &= 0x00c0000;
                if (msr_lo != 0x0080000)
                        return 0;

                /*
                 * If the processor is a mobile version,
                 * platform ID has bit 50 set
                 * it has SpeedStep technology if either
                 * bit 56 or 57 is set
                 */
                rdmsr(MSR_IA32_PLATFORM_ID, msr_lo, msr_hi);
                dprintk("Coppermine: MSR_IA32_PLATFORM ID is 0x%x, 0x%x\n", msr_lo, msr_hi);
                if ((msr_hi & (1<<18)) && (relaxed_check ? 1 : (msr_hi & (3<<24)))) {
                        if (c->x86_mask == 0x01) {
                                dprintk("early PIII version\n");
                                return SPEEDSTEP_PROCESSOR_PIII_C_EARLY;
                        } else
                                return SPEEDSTEP_PROCESSOR_PIII_C;
                }

        default:
                return 0;
        }
}
EXPORT_SYMBOL_GPL(speedstep_detect_processor);


/*********************************************************************
 *                     DETECT SPEEDSTEP SPEEDS                       *
 *********************************************************************/

unsigned int speedstep_get_freqs(unsigned int processor,
                                  unsigned int *low_speed,
                                  unsigned int *high_speed,
                                  unsigned int *transition_latency,
                                  void (*set_state) (unsigned int state))
{
        unsigned int prev_speed;
        unsigned int ret = 0;
        unsigned long flags;
        struct timeval tv1, tv2;

        if ((!processor) || (!low_speed) || (!high_speed) || (!set_state))
                return -EINVAL;

        dprintk("trying to determine both speeds\n");

        /* get current speed */
        prev_speed = speedstep_get_processor_frequency(processor);
        if (!prev_speed)
                return -EIO;

        dprintk("previous speed is %u\n", prev_speed);

        local_irq_save(flags);

        /* switch to low state */
        set_state(SPEEDSTEP_LOW);
        *low_speed = speedstep_get_processor_frequency(processor);
        if (!*low_speed) {
                ret = -EIO;
                goto out;
        }

        dprintk("low speed is %u\n", *low_speed);

        /* start latency measurement */
        if (transition_latency)
                do_gettimeofday(&tv1);

        /* switch to high state */
        set_state(SPEEDSTEP_HIGH);

        /* end latency measurement */
        if (transition_latency)
                do_gettimeofday(&tv2);

        *high_speed = speedstep_get_processor_frequency(processor);
        if (!*high_speed) {
                ret = -EIO;
                goto out;
        }

        dprintk("high speed is %u\n", *high_speed);

        if (*low_speed == *high_speed) {
                ret = -ENODEV;
                goto out;
        }

        /* switch to previous state, if necessary */
        if (*high_speed != prev_speed)
                set_state(SPEEDSTEP_LOW);

        if (transition_latency) {
                *transition_latency = (tv2.tv_sec - tv1.tv_sec) * USEC_PER_SEC +
                        tv2.tv_usec - tv1.tv_usec;
                dprintk("transition latency is %u uSec\n", *transition_latency);

                /* convert uSec to nSec and add 20% for safety reasons */
                *transition_latency *= 1200;

                /* check if the latency measurement is too high or too low
                 * and set it to a safe value (500uSec) in that case
                 */
                if (*transition_latency > 10000000 || *transition_latency < 50000) {
                        printk (KERN_WARNING "speedstep: frequency transition measured seems out of "
                                        "range (%u nSec), falling back to a safe one of %u nSec.\n",
                                        *transition_latency, 500000);
                        *transition_latency = 500000;
                }
        }

out:
        local_irq_restore(flags);
        return (ret);
}
EXPORT_SYMBOL_GPL(speedstep_get_freqs);

#ifdef CONFIG_X86_SPEEDSTEP_RELAXED_CAP_CHECK
module_param(relaxed_check, int, 0444);
MODULE_PARM_DESC(relaxed_check, "Don't do all checks for speedstep capability.");
#endif

MODULE_AUTHOR ("Dominik Brodowski <linux@brodo.de>");
MODULE_DESCRIPTION ("Library for Intel SpeedStep 1 or 2 cpufreq drivers.");
MODULE_LICENSE ("GPL");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading