[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kernel/cpu/cpufreq/e_powersaver.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. eps_get
  2. eps_set_state
  3. eps_target
  4. eps_verify
  5. eps_cpu_init
  6. eps_cpu_exit
  7. eps_init
  8. eps_exit

/*
 *  Based on documentation provided by Dave Jones. Thanks!
 *
 *  Licensed under the terms of the GNU GPL License version 2.
 *
 *  BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/ioport.h>
#include <linux/slab.h>

#include <asm/msr.h>
#include <asm/tsc.h>
#include <asm/timex.h>
#include <asm/io.h>
#include <asm/delay.h>

#define EPS_BRAND_C7M   0
#define EPS_BRAND_C7    1
#define EPS_BRAND_EDEN  2
#define EPS_BRAND_C3    3
#define EPS_BRAND_C7D   4

struct eps_cpu_data {
        u32 fsb;
        struct cpufreq_frequency_table freq_table[];
};

static struct eps_cpu_data *eps_cpu[NR_CPUS];


static unsigned int eps_get(unsigned int cpu)
{
        struct eps_cpu_data *centaur;
        u32 lo, hi;

        if (cpu)
                return 0;
        centaur = eps_cpu[cpu];
        if (centaur == NULL)
                return 0;

        /* Return current frequency */
        rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
        return centaur->fsb * ((lo >> 8) & 0xff);
}

static int eps_set_state(struct eps_cpu_data *centaur,
                         unsigned int cpu,
                         u32 dest_state)
{
        struct cpufreq_freqs freqs;
        u32 lo, hi;
        int err = 0;
        int i;

        freqs.old = eps_get(cpu);
        freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff);
        freqs.cpu = cpu;
        cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);

        /* Wait while CPU is busy */
        rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
        i = 0;
        while (lo & ((1 << 16) | (1 << 17))) {
                udelay(16);
                rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
                i++;
                if (unlikely(i > 64)) {
                        err = -ENODEV;
                        goto postchange;
                }
        }
        /* Set new multiplier and voltage */
        wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
        /* Wait until transition end */
        i = 0;
        do {
                udelay(16);
                rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
                i++;
                if (unlikely(i > 64)) {
                        err = -ENODEV;
                        goto postchange;
                }
        } while (lo & ((1 << 16) | (1 << 17)));

        /* Return current frequency */
postchange:
        rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
        freqs.new = centaur->fsb * ((lo >> 8) & 0xff);

#ifdef DEBUG
        {
        u8 current_multiplier, current_voltage;

        /* Print voltage and multiplier */
        rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
        current_voltage = lo & 0xff;
        printk(KERN_INFO "eps: Current voltage = %dmV\n",
                current_voltage * 16 + 700);
        current_multiplier = (lo >> 8) & 0xff;
        printk(KERN_INFO "eps: Current multiplier = %d\n",
                current_multiplier);
        }
#endif
        cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
        return err;
}

static int eps_target(struct cpufreq_policy *policy,
                               unsigned int target_freq,
                               unsigned int relation)
{
        struct eps_cpu_data *centaur;
        unsigned int newstate = 0;
        unsigned int cpu = policy->cpu;
        unsigned int dest_state;
        int ret;

        if (unlikely(eps_cpu[cpu] == NULL))
                return -ENODEV;
        centaur = eps_cpu[cpu];

        if (unlikely(cpufreq_frequency_table_target(policy,
                        &eps_cpu[cpu]->freq_table[0],
                        target_freq,
                        relation,
                        &newstate))) {
                return -EINVAL;
        }

        /* Make frequency transition */
        dest_state = centaur->freq_table[newstate].index & 0xffff;
        ret = eps_set_state(centaur, cpu, dest_state);
        if (ret)
                printk(KERN_ERR "eps: Timeout!\n");
        return ret;
}

static int eps_verify(struct cpufreq_policy *policy)
{
        return cpufreq_frequency_table_verify(policy,
                        &eps_cpu[policy->cpu]->freq_table[0]);
}

static int eps_cpu_init(struct cpufreq_policy *policy)
{
        unsigned int i;
        u32 lo, hi;
        u64 val;
        u8 current_multiplier, current_voltage;
        u8 max_multiplier, max_voltage;
        u8 min_multiplier, min_voltage;
        u8 brand = 0;
        u32 fsb;
        struct eps_cpu_data *centaur;
        struct cpuinfo_x86 *c = &cpu_data(0);
        struct cpufreq_frequency_table *f_table;
        int k, step, voltage;
        int ret;
        int states;

        if (policy->cpu != 0)
                return -ENODEV;

        /* Check brand */
        printk(KERN_INFO "eps: Detected VIA ");

        switch (c->x86_model) {
        case 10:
                rdmsr(0x1153, lo, hi);
                brand = (((lo >> 2) ^ lo) >> 18) & 3;
                printk(KERN_CONT "Model A ");
                break;
        case 13:
                rdmsr(0x1154, lo, hi);
                brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
                printk(KERN_CONT "Model D ");
                break;
        }

        switch(brand) {
        case EPS_BRAND_C7M:
                printk(KERN_CONT "C7-M\n");
                break;
        case EPS_BRAND_C7:
                printk(KERN_CONT "C7\n");
                break;
        case EPS_BRAND_EDEN:
                printk(KERN_CONT "Eden\n");
                break;
        case EPS_BRAND_C7D:
                printk(KERN_CONT "C7-D\n");
                break;
        case EPS_BRAND_C3:
                printk(KERN_CONT "C3\n");
                return -ENODEV;
                break;
        }
        /* Enable Enhanced PowerSaver */
        rdmsrl(MSR_IA32_MISC_ENABLE, val);
        if (!(val & 1 << 16)) {
                val |= 1 << 16;
                wrmsrl(MSR_IA32_MISC_ENABLE, val);
                /* Can be locked at 0 */
                rdmsrl(MSR_IA32_MISC_ENABLE, val);
                if (!(val & 1 << 16)) {
                        printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
                        return -ENODEV;
                }
        }

        /* Print voltage and multiplier */
        rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
        current_voltage = lo & 0xff;
        printk(KERN_INFO "eps: Current voltage = %dmV\n", current_voltage * 16 + 700);
        current_multiplier = (lo >> 8) & 0xff;
        printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);

        /* Print limits */
        max_voltage = hi & 0xff;
        printk(KERN_INFO "eps: Highest voltage = %dmV\n", max_voltage * 16 + 700);
        max_multiplier = (hi >> 8) & 0xff;
        printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
        min_voltage = (hi >> 16) & 0xff;
        printk(KERN_INFO "eps: Lowest voltage = %dmV\n", min_voltage * 16 + 700);
        min_multiplier = (hi >> 24) & 0xff;
        printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);

        /* Sanity checks */
        if (current_multiplier == 0 || max_multiplier == 0
            || min_multiplier == 0)
                return -EINVAL;
        if (current_multiplier > max_multiplier
            || max_multiplier <= min_multiplier)
                return -EINVAL;
        if (current_voltage > 0x1f || max_voltage > 0x1f)
                return -EINVAL;
        if (max_voltage < min_voltage)
                return -EINVAL;

        /* Calc FSB speed */
        fsb = cpu_khz / current_multiplier;
        /* Calc number of p-states supported */
        if (brand == EPS_BRAND_C7M)
                states = max_multiplier - min_multiplier + 1;
        else
                states = 2;

        /* Allocate private data and frequency table for current cpu */
        centaur = kzalloc(sizeof(struct eps_cpu_data)
                    + (states + 1) * sizeof(struct cpufreq_frequency_table),
                    GFP_KERNEL);
        if (!centaur)
                return -ENOMEM;
        eps_cpu[0] = centaur;

        /* Copy basic values */
        centaur->fsb = fsb;

        /* Fill frequency and MSR value table */
        f_table = &centaur->freq_table[0];
        if (brand != EPS_BRAND_C7M) {
                f_table[0].frequency = fsb * min_multiplier;
                f_table[0].index = (min_multiplier << 8) | min_voltage;
                f_table[1].frequency = fsb * max_multiplier;
                f_table[1].index = (max_multiplier << 8) | max_voltage;
                f_table[2].frequency = CPUFREQ_TABLE_END;
        } else {
                k = 0;
                step = ((max_voltage - min_voltage) * 256)
                        / (max_multiplier - min_multiplier);
                for (i = min_multiplier; i <= max_multiplier; i++) {
                        voltage = (k * step) / 256 + min_voltage;
                        f_table[k].frequency = fsb * i;
                        f_table[k].index = (i << 8) | voltage;
                        k++;
                }
                f_table[k].frequency = CPUFREQ_TABLE_END;
        }

        policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
        policy->cur = fsb * current_multiplier;

        ret = cpufreq_frequency_table_cpuinfo(policy, &centaur->freq_table[0]);
        if (ret) {
                kfree(centaur);
                return ret;
        }

        cpufreq_frequency_table_get_attr(&centaur->freq_table[0], policy->cpu);
        return 0;
}

static int eps_cpu_exit(struct cpufreq_policy *policy)
{
        unsigned int cpu = policy->cpu;
        struct eps_cpu_data *centaur;
        u32 lo, hi;

        if (eps_cpu[cpu] == NULL)
                return -ENODEV;
        centaur = eps_cpu[cpu];

        /* Get max frequency */
        rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
        /* Set max frequency */
        eps_set_state(centaur, cpu, hi & 0xffff);
        /* Bye */
        cpufreq_frequency_table_put_attr(policy->cpu);
        kfree(eps_cpu[cpu]);
        eps_cpu[cpu] = NULL;
        return 0;
}

static struct freq_attr* eps_attr[] = {
        &cpufreq_freq_attr_scaling_available_freqs,
        NULL,
};

static struct cpufreq_driver eps_driver = {
        .verify         = eps_verify,
        .target         = eps_target,
        .init           = eps_cpu_init,
        .exit           = eps_cpu_exit,
        .get            = eps_get,
        .name           = "e_powersaver",
        .owner          = THIS_MODULE,
        .attr           = eps_attr,
};

static int __init eps_init(void)
{
        struct cpuinfo_x86 *c = &cpu_data(0);

        /* This driver will work only on Centaur C7 processors with
         * Enhanced SpeedStep/PowerSaver registers */
        if (c->x86_vendor != X86_VENDOR_CENTAUR
            || c->x86 != 6 || c->x86_model < 10)
                return -ENODEV;
        if (!cpu_has(c, X86_FEATURE_EST))
                return -ENODEV;

        if (cpufreq_register_driver(&eps_driver))
                return -EINVAL;
        return 0;
}

static void __exit eps_exit(void)
{
        cpufreq_unregister_driver(&eps_driver);
}

MODULE_AUTHOR("Rafał Bilski <rafalbilski@interia.pl>");
MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
MODULE_LICENSE("GPL");

module_init(eps_init);
module_exit(eps_exit);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading