[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/math-emu/poly_tan.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. poly_tan

/*---------------------------------------------------------------------------+
 |  poly_tan.c                                                               |
 |                                                                           |
 | Compute the tan of a FPU_REG, using a polynomial approximation.           |
 |                                                                           |
 | Copyright (C) 1992,1993,1994,1997,1999                                    |
 |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
 |                       Australia.  E-mail   billm@melbpc.org.au            |
 |                                                                           |
 |                                                                           |
 +---------------------------------------------------------------------------*/

#include "exception.h"
#include "reg_constant.h"
#include "fpu_emu.h"
#include "fpu_system.h"
#include "control_w.h"
#include "poly.h"

#define HiPOWERop       3       /* odd poly, positive terms */
static const unsigned long long oddplterm[HiPOWERop] = {
        0x0000000000000000LL,
        0x0051a1cf08fca228LL,
        0x0000000071284ff7LL
};

#define HiPOWERon       2       /* odd poly, negative terms */
static const unsigned long long oddnegterm[HiPOWERon] = {
        0x1291a9a184244e80LL,
        0x0000583245819c21LL
};

#define HiPOWERep       2       /* even poly, positive terms */
static const unsigned long long evenplterm[HiPOWERep] = {
        0x0e848884b539e888LL,
        0x00003c7f18b887daLL
};

#define HiPOWERen       2       /* even poly, negative terms */
static const unsigned long long evennegterm[HiPOWERen] = {
        0xf1f0200fd51569ccLL,
        0x003afb46105c4432LL
};

static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;

/*--- poly_tan() ------------------------------------------------------------+
 |                                                                           |
 +---------------------------------------------------------------------------*/
void poly_tan(FPU_REG *st0_ptr)
{
        long int exponent;
        int invert;
        Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
            argSignif, fix_up;
        unsigned long adj;

        exponent = exponent(st0_ptr);

#ifdef PARANOID
        if (signnegative(st0_ptr)) {    /* Can't hack a number < 0.0 */
                arith_invalid(0);
                return;
        }                       /* Need a positive number */
#endif /* PARANOID */

        /* Split the problem into two domains, smaller and larger than pi/4 */
        if ((exponent == 0)
            || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
                /* The argument is greater than (approx) pi/4 */
                invert = 1;
                accum.lsw = 0;
                XSIG_LL(accum) = significand(st0_ptr);

                if (exponent == 0) {
                        /* The argument is >= 1.0 */
                        /* Put the binary point at the left. */
                        XSIG_LL(accum) <<= 1;
                }
                /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
                XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
                /* This is a special case which arises due to rounding. */
                if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
                        FPU_settag0(TAG_Valid);
                        significand(st0_ptr) = 0x8a51e04daabda360LL;
                        setexponent16(st0_ptr,
                                      (0x41 + EXTENDED_Ebias) | SIGN_Negative);
                        return;
                }

                argSignif.lsw = accum.lsw;
                XSIG_LL(argSignif) = XSIG_LL(accum);
                exponent = -1 + norm_Xsig(&argSignif);
        } else {
                invert = 0;
                argSignif.lsw = 0;
                XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);

                if (exponent < -1) {
                        /* shift the argument right by the required places */
                        if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
                            0x80000000U)
                                XSIG_LL(accum)++;       /* round up */
                }
        }

        XSIG_LL(argSq) = XSIG_LL(accum);
        argSq.lsw = accum.lsw;
        mul_Xsig_Xsig(&argSq, &argSq);
        XSIG_LL(argSqSq) = XSIG_LL(argSq);
        argSqSq.lsw = argSq.lsw;
        mul_Xsig_Xsig(&argSqSq, &argSqSq);

        /* Compute the negative terms for the numerator polynomial */
        accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
        polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
                        HiPOWERon - 1);
        mul_Xsig_Xsig(&accumulatoro, &argSq);
        negate_Xsig(&accumulatoro);
        /* Add the positive terms */
        polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
                        HiPOWERop - 1);

        /* Compute the positive terms for the denominator polynomial */
        accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
        polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
                        HiPOWERep - 1);
        mul_Xsig_Xsig(&accumulatore, &argSq);
        negate_Xsig(&accumulatore);
        /* Add the negative terms */
        polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
                        HiPOWERen - 1);
        /* Multiply by arg^2 */
        mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
        mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
        /* de-normalize and divide by 2 */
        shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
        negate_Xsig(&accumulatore);     /* This does 1 - accumulator */

        /* Now find the ratio. */
        if (accumulatore.msw == 0) {
                /* accumulatoro must contain 1.0 here, (actually, 0) but it
                   really doesn't matter what value we use because it will
                   have negligible effect in later calculations
                 */
                XSIG_LL(accum) = 0x8000000000000000LL;
                accum.lsw = 0;
        } else {
                div_Xsig(&accumulatoro, &accumulatore, &accum);
        }

        /* Multiply by 1/3 * arg^3 */
        mul64_Xsig(&accum, &XSIG_LL(argSignif));
        mul64_Xsig(&accum, &XSIG_LL(argSignif));
        mul64_Xsig(&accum, &XSIG_LL(argSignif));
        mul64_Xsig(&accum, &twothirds);
        shr_Xsig(&accum, -2 * (exponent + 1));

        /* tan(arg) = arg + accum */
        add_two_Xsig(&accum, &argSignif, &exponent);

        if (invert) {
                /* We now have the value of tan(pi_2 - arg) where pi_2 is an
                   approximation for pi/2
                 */
                /* The next step is to fix the answer to compensate for the
                   error due to the approximation used for pi/2
                 */

                /* This is (approx) delta, the error in our approx for pi/2
                   (see above). It has an exponent of -65
                 */
                XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
                fix_up.lsw = 0;

                if (exponent == 0)
                        adj = 0xffffffff;       /* We want approx 1.0 here, but
                                                   this is close enough. */
                else if (exponent > -30) {
                        adj = accum.msw >> -(exponent + 1);     /* tan */
                        adj = mul_32_32(adj, adj);      /* tan^2 */
                } else
                        adj = 0;
                adj = mul_32_32(0x898cc517, adj);       /* delta * tan^2 */

                fix_up.msw += adj;
                if (!(fix_up.msw & 0x80000000)) {       /* did fix_up overflow ? */
                        /* Yes, we need to add an msb */
                        shr_Xsig(&fix_up, 1);
                        fix_up.msw |= 0x80000000;
                        shr_Xsig(&fix_up, 64 + exponent);
                } else
                        shr_Xsig(&fix_up, 65 + exponent);

                add_two_Xsig(&accum, &fix_up, &exponent);

                /* accum now contains tan(pi/2 - arg).
                   Use tan(arg) = 1.0 / tan(pi/2 - arg)
                 */
                accumulatoro.lsw = accumulatoro.midw = 0;
                accumulatoro.msw = 0x80000000;
                div_Xsig(&accumulatoro, &accum, &accum);
                exponent = -exponent - 1;
        }

        /* Transfer the result */
        round_Xsig(&accum);
        FPU_settag0(TAG_Valid);
        significand(st0_ptr) = XSIG_LL(accum);
        setexponent16(st0_ptr, exponent + EXTENDED_Ebias);      /* Result is positive. */

}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading