[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/pci/common.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. raw_pci_read
  2. raw_pci_write
  3. pci_read
  4. pci_write
  5. can_skip_ioresource_align
  6. dmi_check_skip_isa_align
  7. pcibios_fixup_device_resources
  8. pcibios_fixup_bus
  9. set_bf_sort
  10. assign_all_busses
  11. dmi_check_pciprobe
  12. pcibios_scan_root
  13. pcibios_init
  14. pcibios_setup
  15. pcibios_assign_all_busses
  16. pcibios_enable_device
  17. pcibios_disable_device
  18. pci_scan_bus_on_node
  19. pci_scan_bus_with_sysdata

/*
 *      Low-Level PCI Support for PC
 *
 *      (c) 1999--2000 Martin Mares <mj@ucw.cz>
 */

#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/dmi.h>

#include <asm/acpi.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <asm/smp.h>

#include "pci.h"

unsigned int pci_probe = PCI_PROBE_BIOS | PCI_PROBE_CONF1 | PCI_PROBE_CONF2 |
                                PCI_PROBE_MMCONF;

unsigned int pci_early_dump_regs;
static int pci_bf_sort;
int pci_routeirq;
int pcibios_last_bus = -1;
unsigned long pirq_table_addr;
struct pci_bus *pci_root_bus;
struct pci_raw_ops *raw_pci_ops;
struct pci_raw_ops *raw_pci_ext_ops;

int raw_pci_read(unsigned int domain, unsigned int bus, unsigned int devfn,
                                                int reg, int len, u32 *val)
{
        if (domain == 0 && reg < 256 && raw_pci_ops)
                return raw_pci_ops->read(domain, bus, devfn, reg, len, val);
        if (raw_pci_ext_ops)
                return raw_pci_ext_ops->read(domain, bus, devfn, reg, len, val);
        return -EINVAL;
}

int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn,
                                                int reg, int len, u32 val)
{
        if (domain == 0 && reg < 256 && raw_pci_ops)
                return raw_pci_ops->write(domain, bus, devfn, reg, len, val);
        if (raw_pci_ext_ops)
                return raw_pci_ext_ops->write(domain, bus, devfn, reg, len, val);
        return -EINVAL;
}

static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
{
        return raw_pci_read(pci_domain_nr(bus), bus->number,
                                 devfn, where, size, value);
}

static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
{
        return raw_pci_write(pci_domain_nr(bus), bus->number,
                                  devfn, where, size, value);
}

struct pci_ops pci_root_ops = {
        .read = pci_read,
        .write = pci_write,
};

/*
 * legacy, numa, and acpi all want to call pcibios_scan_root
 * from their initcalls. This flag prevents that.
 */
int pcibios_scanned;

/*
 * This interrupt-safe spinlock protects all accesses to PCI
 * configuration space.
 */
DEFINE_SPINLOCK(pci_config_lock);

static int __devinit can_skip_ioresource_align(const struct dmi_system_id *d)
{
        pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
        printk(KERN_INFO "PCI: %s detected, can skip ISA alignment\n", d->ident);
        return 0;
}

static struct dmi_system_id can_skip_pciprobe_dmi_table[] __devinitdata = {
/*
 * Systems where PCI IO resource ISA alignment can be skipped
 * when the ISA enable bit in the bridge control is not set
 */
        {
                .callback = can_skip_ioresource_align,
                .ident = "IBM System x3800",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "x3800"),
                },
        },
        {
                .callback = can_skip_ioresource_align,
                .ident = "IBM System x3850",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "x3850"),
                },
        },
        {
                .callback = can_skip_ioresource_align,
                .ident = "IBM System x3950",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "x3950"),
                },
        },
        {}
};

void __init dmi_check_skip_isa_align(void)
{
        dmi_check_system(can_skip_pciprobe_dmi_table);
}

static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
{
        struct resource *rom_r = &dev->resource[PCI_ROM_RESOURCE];

        if (pci_probe & PCI_NOASSIGN_ROMS) {
                if (rom_r->parent)
                        return;
                if (rom_r->start) {
                        /* we deal with BIOS assigned ROM later */
                        return;
                }
                rom_r->start = rom_r->end = rom_r->flags = 0;
        }
}

/*
 *  Called after each bus is probed, but before its children
 *  are examined.
 */

void __devinit  pcibios_fixup_bus(struct pci_bus *b)
{
        struct pci_dev *dev;

        pci_read_bridge_bases(b);
        list_for_each_entry(dev, &b->devices, bus_list)
                pcibios_fixup_device_resources(dev);
}

/*
 * Only use DMI information to set this if nothing was passed
 * on the kernel command line (which was parsed earlier).
 */

static int __devinit set_bf_sort(const struct dmi_system_id *d)
{
        if (pci_bf_sort == pci_bf_sort_default) {
                pci_bf_sort = pci_dmi_bf;
                printk(KERN_INFO "PCI: %s detected, enabling pci=bfsort.\n", d->ident);
        }
        return 0;
}

/*
 * Enable renumbering of PCI bus# ranges to reach all PCI busses (Cardbus)
 */
#ifdef __i386__
static int __devinit assign_all_busses(const struct dmi_system_id *d)
{
        pci_probe |= PCI_ASSIGN_ALL_BUSSES;
        printk(KERN_INFO "%s detected: enabling PCI bus# renumbering"
                        " (pci=assign-busses)\n", d->ident);
        return 0;
}
#endif

static struct dmi_system_id __devinitdata pciprobe_dmi_table[] = {
#ifdef __i386__
/*
 * Laptops which need pci=assign-busses to see Cardbus cards
 */
        {
                .callback = assign_all_busses,
                .ident = "Samsung X20 Laptop",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "Samsung Electronics"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "SX20S"),
                },
        },
#endif          /* __i386__ */
        {
                .callback = set_bf_sort,
                .ident = "Dell PowerEdge 1950",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1950"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "Dell PowerEdge 1955",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1955"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "Dell PowerEdge 2900",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2900"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "Dell PowerEdge 2950",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2950"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "Dell PowerEdge R900",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge R900"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL20p G3",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G3"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL20p G4",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G4"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL30p G1",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL30p G1"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL25p G1",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL25p G1"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL35p G1",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL35p G1"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL45p G1",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G1"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL45p G2",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G2"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL460c G1",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL460c G1"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL465c G1",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL465c G1"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL480c G1",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL480c G1"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant BL685c G1",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL685c G1"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant DL360",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL360"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant DL380",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL380"),
                },
        },
#ifdef __i386__
        {
                .callback = assign_all_busses,
                .ident = "Compaq EVO N800c",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "EVO N800c"),
                },
        },
#endif
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant DL385 G2",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL385 G2"),
                },
        },
        {
                .callback = set_bf_sort,
                .ident = "HP ProLiant DL585 G2",
                .matches = {
                        DMI_MATCH(DMI_SYS_VENDOR, "HP"),
                        DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL585 G2"),
                },
        },
        {}
};

void __init dmi_check_pciprobe(void)
{
        dmi_check_system(pciprobe_dmi_table);
}

struct pci_bus * __devinit pcibios_scan_root(int busnum)
{
        struct pci_bus *bus = NULL;
        struct pci_sysdata *sd;

        while ((bus = pci_find_next_bus(bus)) != NULL) {
                if (bus->number == busnum) {
                        /* Already scanned */
                        return bus;
                }
        }

        /* Allocate per-root-bus (not per bus) arch-specific data.
         * TODO: leak; this memory is never freed.
         * It's arguable whether it's worth the trouble to care.
         */
        sd = kzalloc(sizeof(*sd), GFP_KERNEL);
        if (!sd) {
                printk(KERN_ERR "PCI: OOM, not probing PCI bus %02x\n", busnum);
                return NULL;
        }

        sd->node = get_mp_bus_to_node(busnum);

        printk(KERN_DEBUG "PCI: Probing PCI hardware (bus %02x)\n", busnum);
        bus = pci_scan_bus_parented(NULL, busnum, &pci_root_ops, sd);
        if (!bus)
                kfree(sd);

        return bus;
}

extern u8 pci_cache_line_size;

int __init pcibios_init(void)
{
        struct cpuinfo_x86 *c = &boot_cpu_data;

        if (!raw_pci_ops) {
                printk(KERN_WARNING "PCI: System does not support PCI\n");
                return 0;
        }

        /*
         * Assume PCI cacheline size of 32 bytes for all x86s except K7/K8
         * and P4. It's also good for 386/486s (which actually have 16)
         * as quite a few PCI devices do not support smaller values.
         */
        pci_cache_line_size = 32 >> 2;
        if (c->x86 >= 6 && c->x86_vendor == X86_VENDOR_AMD)
                pci_cache_line_size = 64 >> 2;  /* K7 & K8 */
        else if (c->x86 > 6 && c->x86_vendor == X86_VENDOR_INTEL)
                pci_cache_line_size = 128 >> 2; /* P4 */

        pcibios_resource_survey();

        if (pci_bf_sort >= pci_force_bf)
                pci_sort_breadthfirst();
        return 0;
}

char * __devinit  pcibios_setup(char *str)
{
        if (!strcmp(str, "off")) {
                pci_probe = 0;
                return NULL;
        } else if (!strcmp(str, "bfsort")) {
                pci_bf_sort = pci_force_bf;
                return NULL;
        } else if (!strcmp(str, "nobfsort")) {
                pci_bf_sort = pci_force_nobf;
                return NULL;
        }
#ifdef CONFIG_PCI_BIOS
        else if (!strcmp(str, "bios")) {
                pci_probe = PCI_PROBE_BIOS;
                return NULL;
        } else if (!strcmp(str, "nobios")) {
                pci_probe &= ~PCI_PROBE_BIOS;
                return NULL;
        } else if (!strcmp(str, "biosirq")) {
                pci_probe |= PCI_BIOS_IRQ_SCAN;
                return NULL;
        } else if (!strncmp(str, "pirqaddr=", 9)) {
                pirq_table_addr = simple_strtoul(str+9, NULL, 0);
                return NULL;
        }
#endif
#ifdef CONFIG_PCI_DIRECT
        else if (!strcmp(str, "conf1")) {
                pci_probe = PCI_PROBE_CONF1 | PCI_NO_CHECKS;
                return NULL;
        }
        else if (!strcmp(str, "conf2")) {
                pci_probe = PCI_PROBE_CONF2 | PCI_NO_CHECKS;
                return NULL;
        }
#endif
#ifdef CONFIG_PCI_MMCONFIG
        else if (!strcmp(str, "nommconf")) {
                pci_probe &= ~PCI_PROBE_MMCONF;
                return NULL;
        }
        else if (!strcmp(str, "check_enable_amd_mmconf")) {
                pci_probe |= PCI_CHECK_ENABLE_AMD_MMCONF;
                return NULL;
        }
#endif
        else if (!strcmp(str, "noacpi")) {
                acpi_noirq_set();
                return NULL;
        }
        else if (!strcmp(str, "noearly")) {
                pci_probe |= PCI_PROBE_NOEARLY;
                return NULL;
        }
#ifndef CONFIG_X86_VISWS
        else if (!strcmp(str, "usepirqmask")) {
                pci_probe |= PCI_USE_PIRQ_MASK;
                return NULL;
        } else if (!strncmp(str, "irqmask=", 8)) {
                pcibios_irq_mask = simple_strtol(str+8, NULL, 0);
                return NULL;
        } else if (!strncmp(str, "lastbus=", 8)) {
                pcibios_last_bus = simple_strtol(str+8, NULL, 0);
                return NULL;
        }
#endif
        else if (!strcmp(str, "rom")) {
                pci_probe |= PCI_ASSIGN_ROMS;
                return NULL;
        } else if (!strcmp(str, "norom")) {
                pci_probe |= PCI_NOASSIGN_ROMS;
                return NULL;
        } else if (!strcmp(str, "assign-busses")) {
                pci_probe |= PCI_ASSIGN_ALL_BUSSES;
                return NULL;
        } else if (!strcmp(str, "use_crs")) {
                pci_probe |= PCI_USE__CRS;
                return NULL;
        } else if (!strcmp(str, "earlydump")) {
                pci_early_dump_regs = 1;
                return NULL;
        } else if (!strcmp(str, "routeirq")) {
                pci_routeirq = 1;
                return NULL;
        } else if (!strcmp(str, "skip_isa_align")) {
                pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
                return NULL;
        }
        return str;
}

unsigned int pcibios_assign_all_busses(void)
{
        return (pci_probe & PCI_ASSIGN_ALL_BUSSES) ? 1 : 0;
}

int pcibios_enable_device(struct pci_dev *dev, int mask)
{
        int err;

        if ((err = pci_enable_resources(dev, mask)) < 0)
                return err;

        if (!dev->msi_enabled)
                return pcibios_enable_irq(dev);
        return 0;
}

void pcibios_disable_device (struct pci_dev *dev)
{
        if (!dev->msi_enabled && pcibios_disable_irq)
                pcibios_disable_irq(dev);
}

struct pci_bus * __devinit pci_scan_bus_on_node(int busno, struct pci_ops *ops, int node)
{
        struct pci_bus *bus = NULL;
        struct pci_sysdata *sd;

        /*
         * Allocate per-root-bus (not per bus) arch-specific data.
         * TODO: leak; this memory is never freed.
         * It's arguable whether it's worth the trouble to care.
         */
        sd = kzalloc(sizeof(*sd), GFP_KERNEL);
        if (!sd) {
                printk(KERN_ERR "PCI: OOM, skipping PCI bus %02x\n", busno);
                return NULL;
        }
        sd->node = node;
        bus = pci_scan_bus(busno, ops, sd);
        if (!bus)
                kfree(sd);

        return bus;
}

struct pci_bus * __devinit pci_scan_bus_with_sysdata(int busno)
{
        return pci_scan_bus_on_node(busno, &pci_root_ops, -1);
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading