[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/core/oss/mulaw.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. val_seg
  2. linear2ulaw
  3. ulaw2linear
  4. cvt_s16_to_native
  5. mulaw_decode
  6. cvt_native_to_s16
  7. mulaw_encode
  8. mulaw_transfer
  9. init_data
  10. snd_pcm_plugin_build_mulaw

/*
 *  Mu-Law conversion Plug-In Interface
 *  Copyright (c) 1999 by Jaroslav Kysela <perex@perex.cz>
 *                        Uros Bizjak <uros@kss-loka.si>
 *
 *  Based on reference implementation by Sun Microsystems, Inc.
 *
 *   This library is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU Library General Public License as
 *   published by the Free Software Foundation; either version 2 of
 *   the License, or (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU Library General Public License for more details.
 *
 *   You should have received a copy of the GNU Library General Public
 *   License along with this library; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */
  
#include <linux/time.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include "pcm_plugin.h"

#define SIGN_BIT        (0x80)          /* Sign bit for a u-law byte. */
#define QUANT_MASK      (0xf)           /* Quantization field mask. */
#define NSEGS           (8)             /* Number of u-law segments. */
#define SEG_SHIFT       (4)             /* Left shift for segment number. */
#define SEG_MASK        (0x70)          /* Segment field mask. */

static inline int val_seg(int val)
{
        int r = 0;
        val >>= 7;
        if (val & 0xf0) {
                val >>= 4;
                r += 4;
        }
        if (val & 0x0c) {
                val >>= 2;
                r += 2;
        }
        if (val & 0x02)
                r += 1;
        return r;
}

#define BIAS            (0x84)          /* Bias for linear code. */

/*
 * linear2ulaw() - Convert a linear PCM value to u-law
 *
 * In order to simplify the encoding process, the original linear magnitude
 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
 * (33 - 8191). The result can be seen in the following encoding table:
 *
 *      Biased Linear Input Code        Compressed Code
 *      ------------------------        ---------------
 *      00000001wxyza                   000wxyz
 *      0000001wxyzab                   001wxyz
 *      000001wxyzabc                   010wxyz
 *      00001wxyzabcd                   011wxyz
 *      0001wxyzabcde                   100wxyz
 *      001wxyzabcdef                   101wxyz
 *      01wxyzabcdefg                   110wxyz
 *      1wxyzabcdefgh                   111wxyz
 *
 * Each biased linear code has a leading 1 which identifies the segment
 * number. The value of the segment number is equal to 7 minus the number
 * of leading 0's. The quantization interval is directly available as the
 * four bits wxyz.  * The trailing bits (a - h) are ignored.
 *
 * Ordinarily the complement of the resulting code word is used for
 * transmission, and so the code word is complemented before it is returned.
 *
 * For further information see John C. Bellamy's Digital Telephony, 1982,
 * John Wiley & Sons, pps 98-111 and 472-476.
 */
static unsigned char linear2ulaw(int pcm_val)   /* 2's complement (16-bit range) */
{
        int mask;
        int seg;
        unsigned char uval;

        /* Get the sign and the magnitude of the value. */
        if (pcm_val < 0) {
                pcm_val = BIAS - pcm_val;
                mask = 0x7F;
        } else {
                pcm_val += BIAS;
                mask = 0xFF;
        }
        if (pcm_val > 0x7FFF)
                pcm_val = 0x7FFF;

        /* Convert the scaled magnitude to segment number. */
        seg = val_seg(pcm_val);

        /*
         * Combine the sign, segment, quantization bits;
         * and complement the code word.
         */
        uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
        return uval ^ mask;
}

/*
 * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
 *
 * First, a biased linear code is derived from the code word. An unbiased
 * output can then be obtained by subtracting 33 from the biased code.
 *
 * Note that this function expects to be passed the complement of the
 * original code word. This is in keeping with ISDN conventions.
 */
static int ulaw2linear(unsigned char u_val)
{
        int t;

        /* Complement to obtain normal u-law value. */
        u_val = ~u_val;

        /*
         * Extract and bias the quantization bits. Then
         * shift up by the segment number and subtract out the bias.
         */
        t = ((u_val & QUANT_MASK) << 3) + BIAS;
        t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;

        return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
}

/*
 *  Basic Mu-Law plugin
 */

typedef void (*mulaw_f)(struct snd_pcm_plugin *plugin,
                        const struct snd_pcm_plugin_channel *src_channels,
                        struct snd_pcm_plugin_channel *dst_channels,
                        snd_pcm_uframes_t frames);

struct mulaw_priv {
        mulaw_f func;
        int cvt_endian;                 /* need endian conversion? */
        unsigned int native_ofs;        /* byte offset in native format */
        unsigned int copy_ofs;          /* byte offset in s16 format */
        unsigned int native_bytes;      /* byte size of the native format */
        unsigned int copy_bytes;        /* bytes to copy per conversion */
        u16 flip; /* MSB flip for signedness, done after endian conversion */
};

static inline void cvt_s16_to_native(struct mulaw_priv *data,
                                     unsigned char *dst, u16 sample)
{
        sample ^= data->flip;
        if (data->cvt_endian)
                sample = swab16(sample);
        if (data->native_bytes > data->copy_bytes)
                memset(dst, 0, data->native_bytes);
        memcpy(dst + data->native_ofs, (char *)&sample + data->copy_ofs,
               data->copy_bytes);
}

static void mulaw_decode(struct snd_pcm_plugin *plugin,
                        const struct snd_pcm_plugin_channel *src_channels,
                        struct snd_pcm_plugin_channel *dst_channels,
                        snd_pcm_uframes_t frames)
{
        struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data;
        int channel;
        int nchannels = plugin->src_format.channels;
        for (channel = 0; channel < nchannels; ++channel) {
                char *src;
                char *dst;
                int src_step, dst_step;
                snd_pcm_uframes_t frames1;
                if (!src_channels[channel].enabled) {
                        if (dst_channels[channel].wanted)
                                snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format);
                        dst_channels[channel].enabled = 0;
                        continue;
                }
                dst_channels[channel].enabled = 1;
                src = src_channels[channel].area.addr + src_channels[channel].area.first / 8;
                dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8;
                src_step = src_channels[channel].area.step / 8;
                dst_step = dst_channels[channel].area.step / 8;
                frames1 = frames;
                while (frames1-- > 0) {
                        signed short sample = ulaw2linear(*src);
                        cvt_s16_to_native(data, dst, sample);
                        src += src_step;
                        dst += dst_step;
                }
        }
}

static inline signed short cvt_native_to_s16(struct mulaw_priv *data,
                                             unsigned char *src)
{
        u16 sample = 0;
        memcpy((char *)&sample + data->copy_ofs, src + data->native_ofs,
               data->copy_bytes);
        if (data->cvt_endian)
                sample = swab16(sample);
        sample ^= data->flip;
        return (signed short)sample;
}

static void mulaw_encode(struct snd_pcm_plugin *plugin,
                        const struct snd_pcm_plugin_channel *src_channels,
                        struct snd_pcm_plugin_channel *dst_channels,
                        snd_pcm_uframes_t frames)
{
        struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data;
        int channel;
        int nchannels = plugin->src_format.channels;
        for (channel = 0; channel < nchannels; ++channel) {
                char *src;
                char *dst;
                int src_step, dst_step;
                snd_pcm_uframes_t frames1;
                if (!src_channels[channel].enabled) {
                        if (dst_channels[channel].wanted)
                                snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format);
                        dst_channels[channel].enabled = 0;
                        continue;
                }
                dst_channels[channel].enabled = 1;
                src = src_channels[channel].area.addr + src_channels[channel].area.first / 8;
                dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8;
                src_step = src_channels[channel].area.step / 8;
                dst_step = dst_channels[channel].area.step / 8;
                frames1 = frames;
                while (frames1-- > 0) {
                        signed short sample = cvt_native_to_s16(data, src);
                        *dst = linear2ulaw(sample);
                        src += src_step;
                        dst += dst_step;
                }
        }
}

static snd_pcm_sframes_t mulaw_transfer(struct snd_pcm_plugin *plugin,
                              const struct snd_pcm_plugin_channel *src_channels,
                              struct snd_pcm_plugin_channel *dst_channels,
                              snd_pcm_uframes_t frames)
{
        struct mulaw_priv *data;

        if (snd_BUG_ON(!plugin || !src_channels || !dst_channels))
                return -ENXIO;
        if (frames == 0)
                return 0;
#ifdef CONFIG_SND_DEBUG
        {
                unsigned int channel;
                for (channel = 0; channel < plugin->src_format.channels; channel++) {
                        if (snd_BUG_ON(src_channels[channel].area.first % 8 ||
                                       src_channels[channel].area.step % 8))
                                return -ENXIO;
                        if (snd_BUG_ON(dst_channels[channel].area.first % 8 ||
                                       dst_channels[channel].area.step % 8))
                                return -ENXIO;
                }
        }
#endif
        data = (struct mulaw_priv *)plugin->extra_data;
        data->func(plugin, src_channels, dst_channels, frames);
        return frames;
}

static void init_data(struct mulaw_priv *data, int format)
{
#ifdef SNDRV_LITTLE_ENDIAN
        data->cvt_endian = snd_pcm_format_big_endian(format) > 0;
#else
        data->cvt_endian = snd_pcm_format_little_endian(format) > 0;
#endif
        if (!snd_pcm_format_signed(format))
                data->flip = 0x8000;
        data->native_bytes = snd_pcm_format_physical_width(format) / 8;
        data->copy_bytes = data->native_bytes < 2 ? 1 : 2;
        if (snd_pcm_format_little_endian(format)) {
                data->native_ofs = data->native_bytes - data->copy_bytes;
                data->copy_ofs = 2 - data->copy_bytes;
        } else {
                /* S24 in 4bytes need an 1 byte offset */
                data->native_ofs = data->native_bytes -
                        snd_pcm_format_width(format) / 8;
        }
}

int snd_pcm_plugin_build_mulaw(struct snd_pcm_substream *plug,
                               struct snd_pcm_plugin_format *src_format,
                               struct snd_pcm_plugin_format *dst_format,
                               struct snd_pcm_plugin **r_plugin)
{
        int err;
        struct mulaw_priv *data;
        struct snd_pcm_plugin *plugin;
        struct snd_pcm_plugin_format *format;
        mulaw_f func;

        if (snd_BUG_ON(!r_plugin))
                return -ENXIO;
        *r_plugin = NULL;

        if (snd_BUG_ON(src_format->rate != dst_format->rate))
                return -ENXIO;
        if (snd_BUG_ON(src_format->channels != dst_format->channels))
                return -ENXIO;

        if (dst_format->format == SNDRV_PCM_FORMAT_MU_LAW) {
                format = src_format;
                func = mulaw_encode;
        }
        else if (src_format->format == SNDRV_PCM_FORMAT_MU_LAW) {
                format = dst_format;
                func = mulaw_decode;
        }
        else {
                snd_BUG();
                return -EINVAL;
        }
        if (snd_BUG_ON(!snd_pcm_format_linear(format->format)))
                return -ENXIO;

        err = snd_pcm_plugin_build(plug, "Mu-Law<->linear conversion",
                                   src_format, dst_format,
                                   sizeof(struct mulaw_priv), &plugin);
        if (err < 0)
                return err;
        data = (struct mulaw_priv *)plugin->extra_data;
        data->func = func;
        init_data(data, format->format);
        plugin->transfer = mulaw_transfer;
        *r_plugin = plugin;
        return 0;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading