[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/ppc/tumbler.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. send_init_client
  2. tumbler_init_client
  3. snapper_init_client
  4. write_audio_gpio
  5. check_audio_gpio
  6. read_audio_gpio
  7. tumbler_set_master_volume
  8. tumbler_info_master_volume
  9. tumbler_get_master_volume
  10. tumbler_put_master_volume
  11. tumbler_get_master_switch
  12. tumbler_put_master_switch
  13. tumbler_set_drc
  14. snapper_set_drc
  15. tumbler_info_drc_value
  16. tumbler_get_drc_value
  17. tumbler_put_drc_value
  18. tumbler_get_drc_switch
  19. tumbler_put_drc_switch
  20. tumbler_set_mono_volume
  21. tumbler_info_mono
  22. tumbler_get_mono
  23. tumbler_put_mono
  24. snapper_set_mix_vol1
  25. snapper_set_mix_vol
  26. snapper_info_mix
  27. snapper_get_mix
  28. snapper_put_mix
  29. tumbler_get_mute_switch
  30. tumbler_put_mute_switch
  31. snapper_set_capture_source
  32. snapper_info_capture_source
  33. snapper_get_capture_source
  34. snapper_put_capture_source
  35. tumbler_detect_headphone
  36. tumbler_detect_lineout
  37. check_mute
  38. device_change_handler
  39. tumbler_update_automute
  40. headphone_intr
  41. find_audio_device
  42. find_compatible_audio_device
  43. tumbler_find_device
  44. tumbler_reset_audio
  45. tumbler_suspend
  46. tumbler_resume
  47. tumbler_init
  48. tumbler_cleanup
  49. snd_pmac_tumbler_init

/*
 * PMac Tumbler/Snapper lowlevel functions
 *
 * Copyright (c) by Takashi Iwai <tiwai@suse.de>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 *   Rene Rebe <rene.rebe@gmx.net>:
 *     * update from shadow registers on wakeup and headphone plug
 *     * automatically toggle DRC on headphone plug
 *      
 */


#include <linux/init.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <sound/core.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include "pmac.h"
#include "tumbler_volume.h"

#undef DEBUG

#ifdef DEBUG
#define DBG(fmt...) printk(fmt)
#else
#define DBG(fmt...)
#endif

/* i2c address for tumbler */
#define TAS_I2C_ADDR    0x34

/* registers */
#define TAS_REG_MCS     0x01    /* main control */
#define TAS_REG_DRC     0x02
#define TAS_REG_VOL     0x04
#define TAS_REG_TREBLE  0x05
#define TAS_REG_BASS    0x06
#define TAS_REG_INPUT1  0x07
#define TAS_REG_INPUT2  0x08

/* tas3001c */
#define TAS_REG_PCM     TAS_REG_INPUT1
 
/* tas3004 */
#define TAS_REG_LMIX    TAS_REG_INPUT1
#define TAS_REG_RMIX    TAS_REG_INPUT2
#define TAS_REG_MCS2    0x43            /* main control 2 */
#define TAS_REG_ACS     0x40            /* analog control */

/* mono volumes for tas3001c/tas3004 */
enum {
        VOL_IDX_PCM_MONO, /* tas3001c only */
        VOL_IDX_BASS, VOL_IDX_TREBLE,
        VOL_IDX_LAST_MONO
};

/* stereo volumes for tas3004 */
enum {
        VOL_IDX_PCM, VOL_IDX_PCM2, VOL_IDX_ADC,
        VOL_IDX_LAST_MIX
};

struct pmac_gpio {
        unsigned int addr;
        u8 active_val;
        u8 inactive_val;
        u8 active_state;
};

struct pmac_tumbler {
        struct pmac_keywest i2c;
        struct pmac_gpio audio_reset;
        struct pmac_gpio amp_mute;
        struct pmac_gpio line_mute;
        struct pmac_gpio line_detect;
        struct pmac_gpio hp_mute;
        struct pmac_gpio hp_detect;
        int headphone_irq;
        int lineout_irq;
        unsigned int save_master_vol[2];
        unsigned int master_vol[2];
        unsigned int save_master_switch[2];
        unsigned int master_switch[2];
        unsigned int mono_vol[VOL_IDX_LAST_MONO];
        unsigned int mix_vol[VOL_IDX_LAST_MIX][2]; /* stereo volumes for tas3004 */
        int drc_range;
        int drc_enable;
        int capture_source;
        int anded_reset;
        int auto_mute_notify;
        int reset_on_sleep;
        u8  acs;
};


/*
 */

static int send_init_client(struct pmac_keywest *i2c, unsigned int *regs)
{
        while (*regs > 0) {
                int err, count = 10;
                do {
                        err = i2c_smbus_write_byte_data(i2c->client,
                                                        regs[0], regs[1]);
                        if (err >= 0)
                                break;
                        DBG("(W) i2c error %d\n", err);
                        mdelay(10);
                } while (count--);
                if (err < 0)
                        return -ENXIO;
                regs += 2;
        }
        return 0;
}


static int tumbler_init_client(struct pmac_keywest *i2c)
{
        static unsigned int regs[] = {
                /* normal operation, SCLK=64fps, i2s output, i2s input, 16bit width */
                TAS_REG_MCS, (1<<6)|(2<<4)|(2<<2)|0,
                0, /* terminator */
        };
        DBG("(I) tumbler init client\n");
        return send_init_client(i2c, regs);
}

static int snapper_init_client(struct pmac_keywest *i2c)
{
        static unsigned int regs[] = {
                /* normal operation, SCLK=64fps, i2s output, 16bit width */
                TAS_REG_MCS, (1<<6)|(2<<4)|0,
                /* normal operation, all-pass mode */
                TAS_REG_MCS2, (1<<1),
                /* normal output, no deemphasis, A input, power-up, line-in */
                TAS_REG_ACS, 0,
                0, /* terminator */
        };
        DBG("(I) snapper init client\n");
        return send_init_client(i2c, regs);
}
        
/*
 * gpio access
 */
#define do_gpio_write(gp, val) \
        pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, (gp)->addr, val)
#define do_gpio_read(gp) \
        pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, (gp)->addr, 0)
#define tumbler_gpio_free(gp) /* NOP */

static void write_audio_gpio(struct pmac_gpio *gp, int active)
{
        if (! gp->addr)
                return;
        active = active ? gp->active_val : gp->inactive_val;
        do_gpio_write(gp, active);
        DBG("(I) gpio %x write %d\n", gp->addr, active);
}

static int check_audio_gpio(struct pmac_gpio *gp)
{
        int ret;

        if (! gp->addr)
                return 0;

        ret = do_gpio_read(gp);

        return (ret & 0x1) == (gp->active_val & 0x1);
}

static int read_audio_gpio(struct pmac_gpio *gp)
{
        int ret;
        if (! gp->addr)
                return 0;
        ret = do_gpio_read(gp);
        ret = (ret & 0x02) !=0;
        return ret == gp->active_state;
}

/*
 * update master volume
 */
static int tumbler_set_master_volume(struct pmac_tumbler *mix)
{
        unsigned char block[6];
        unsigned int left_vol, right_vol;
  
        if (! mix->i2c.client)
                return -ENODEV;
  
        if (! mix->master_switch[0])
                left_vol = 0;
        else {
                left_vol = mix->master_vol[0];
                if (left_vol >= ARRAY_SIZE(master_volume_table))
                        left_vol = ARRAY_SIZE(master_volume_table) - 1;
                left_vol = master_volume_table[left_vol];
        }
        if (! mix->master_switch[1])
                right_vol = 0;
        else {
                right_vol = mix->master_vol[1];
                if (right_vol >= ARRAY_SIZE(master_volume_table))
                        right_vol = ARRAY_SIZE(master_volume_table) - 1;
                right_vol = master_volume_table[right_vol];
        }

        block[0] = (left_vol >> 16) & 0xff;
        block[1] = (left_vol >> 8)  & 0xff;
        block[2] = (left_vol >> 0)  & 0xff;

        block[3] = (right_vol >> 16) & 0xff;
        block[4] = (right_vol >> 8)  & 0xff;
        block[5] = (right_vol >> 0)  & 0xff;
  
        if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_VOL, 6,
                                           block) < 0) {
                snd_printk("failed to set volume \n");
                return -EINVAL;
        }
        return 0;
}


/* output volume */
static int tumbler_info_master_volume(struct snd_kcontrol *kcontrol,
                                      struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = ARRAY_SIZE(master_volume_table) - 1;
        return 0;
}

static int tumbler_get_master_volume(struct snd_kcontrol *kcontrol,
                                     struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix = chip->mixer_data;

        ucontrol->value.integer.value[0] = mix->master_vol[0];
        ucontrol->value.integer.value[1] = mix->master_vol[1];
        return 0;
}

static int tumbler_put_master_volume(struct snd_kcontrol *kcontrol,
                                     struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix = chip->mixer_data;
        unsigned int vol[2];
        int change;

        vol[0] = ucontrol->value.integer.value[0];
        vol[1] = ucontrol->value.integer.value[1];
        if (vol[0] >= ARRAY_SIZE(master_volume_table) ||
            vol[1] >= ARRAY_SIZE(master_volume_table))
                return -EINVAL;
        change = mix->master_vol[0] != vol[0] ||
                mix->master_vol[1] != vol[1];
        if (change) {
                mix->master_vol[0] = vol[0];
                mix->master_vol[1] = vol[1];
                tumbler_set_master_volume(mix);
        }
        return change;
}

/* output switch */
static int tumbler_get_master_switch(struct snd_kcontrol *kcontrol,
                                     struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix = chip->mixer_data;

        ucontrol->value.integer.value[0] = mix->master_switch[0];
        ucontrol->value.integer.value[1] = mix->master_switch[1];
        return 0;
}

static int tumbler_put_master_switch(struct snd_kcontrol *kcontrol,
                                     struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix = chip->mixer_data;
        int change;

        change = mix->master_switch[0] != ucontrol->value.integer.value[0] ||
                mix->master_switch[1] != ucontrol->value.integer.value[1];
        if (change) {
                mix->master_switch[0] = !!ucontrol->value.integer.value[0];
                mix->master_switch[1] = !!ucontrol->value.integer.value[1];
                tumbler_set_master_volume(mix);
        }
        return change;
}


/*
 * TAS3001c dynamic range compression
 */

#define TAS3001_DRC_MAX         0x5f

static int tumbler_set_drc(struct pmac_tumbler *mix)
{
        unsigned char val[2];

        if (! mix->i2c.client)
                return -ENODEV;
  
        if (mix->drc_enable) {
                val[0] = 0xc1; /* enable, 3:1 compression */
                if (mix->drc_range > TAS3001_DRC_MAX)
                        val[1] = 0xf0;
                else if (mix->drc_range < 0)
                        val[1] = 0x91;
                else
                        val[1] = mix->drc_range + 0x91;
        } else {
                val[0] = 0;
                val[1] = 0;
        }

        if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
                                           2, val) < 0) {
                snd_printk("failed to set DRC\n");
                return -EINVAL;
        }
        return 0;
}

/*
 * TAS3004
 */

#define TAS3004_DRC_MAX         0xef

static int snapper_set_drc(struct pmac_tumbler *mix)
{
        unsigned char val[6];

        if (! mix->i2c.client)
                return -ENODEV;
  
        if (mix->drc_enable)
                val[0] = 0x50; /* 3:1 above threshold */
        else
                val[0] = 0x51; /* disabled */
        val[1] = 0x02; /* 1:1 below threshold */
        if (mix->drc_range > 0xef)
                val[2] = 0xef;
        else if (mix->drc_range < 0)
                val[2] = 0x00;
        else
                val[2] = mix->drc_range;
        val[3] = 0xb0;
        val[4] = 0x60;
        val[5] = 0xa0;

        if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
                                           6, val) < 0) {
                snd_printk("failed to set DRC\n");
                return -EINVAL;
        }
        return 0;
}

static int tumbler_info_drc_value(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_info *uinfo)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max =
                chip->model == PMAC_TUMBLER ? TAS3001_DRC_MAX : TAS3004_DRC_MAX;
        return 0;
}

static int tumbler_get_drc_value(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        if (! (mix = chip->mixer_data))
                return -ENODEV;
        ucontrol->value.integer.value[0] = mix->drc_range;
        return 0;
}

static int tumbler_put_drc_value(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        unsigned int val;
        int change;

        if (! (mix = chip->mixer_data))
                return -ENODEV;
        val = ucontrol->value.integer.value[0];
        if (chip->model == PMAC_TUMBLER) {
                if (val > TAS3001_DRC_MAX)
                        return -EINVAL;
        } else {
                if (val > TAS3004_DRC_MAX)
                        return -EINVAL;
        }
        change = mix->drc_range != val;
        if (change) {
                mix->drc_range = val;
                if (chip->model == PMAC_TUMBLER)
                        tumbler_set_drc(mix);
                else
                        snapper_set_drc(mix);
        }
        return change;
}

static int tumbler_get_drc_switch(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        if (! (mix = chip->mixer_data))
                return -ENODEV;
        ucontrol->value.integer.value[0] = mix->drc_enable;
        return 0;
}

static int tumbler_put_drc_switch(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        int change;

        if (! (mix = chip->mixer_data))
                return -ENODEV;
        change = mix->drc_enable != ucontrol->value.integer.value[0];
        if (change) {
                mix->drc_enable = !!ucontrol->value.integer.value[0];
                if (chip->model == PMAC_TUMBLER)
                        tumbler_set_drc(mix);
                else
                        snapper_set_drc(mix);
        }
        return change;
}


/*
 * mono volumes
 */

struct tumbler_mono_vol {
        int index;
        int reg;
        int bytes;
        unsigned int max;
        unsigned int *table;
};

static int tumbler_set_mono_volume(struct pmac_tumbler *mix,
                                   struct tumbler_mono_vol *info)
{
        unsigned char block[4];
        unsigned int vol;
        int i;
  
        if (! mix->i2c.client)
                return -ENODEV;
  
        vol = mix->mono_vol[info->index];
        if (vol >= info->max)
                vol = info->max - 1;
        vol = info->table[vol];
        for (i = 0; i < info->bytes; i++)
                block[i] = (vol >> ((info->bytes - i - 1) * 8)) & 0xff;
        if (i2c_smbus_write_i2c_block_data(mix->i2c.client, info->reg,
                                           info->bytes, block) < 0) {
                snd_printk("failed to set mono volume %d\n", info->index);
                return -EINVAL;
        }
        return 0;
}

static int tumbler_info_mono(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_info *uinfo)
{
        struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;

        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = info->max - 1;
        return 0;
}

static int tumbler_get_mono(struct snd_kcontrol *kcontrol,
                            struct snd_ctl_elem_value *ucontrol)
{
        struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        if (! (mix = chip->mixer_data))
                return -ENODEV;
        ucontrol->value.integer.value[0] = mix->mono_vol[info->index];
        return 0;
}

static int tumbler_put_mono(struct snd_kcontrol *kcontrol,
                            struct snd_ctl_elem_value *ucontrol)
{
        struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        unsigned int vol;
        int change;

        if (! (mix = chip->mixer_data))
                return -ENODEV;
        vol = ucontrol->value.integer.value[0];
        if (vol >= info->max)
                return -EINVAL;
        change = mix->mono_vol[info->index] != vol;
        if (change) {
                mix->mono_vol[info->index] = vol;
                tumbler_set_mono_volume(mix, info);
        }
        return change;
}

/* TAS3001c mono volumes */
static struct tumbler_mono_vol tumbler_pcm_vol_info = {
        .index = VOL_IDX_PCM_MONO,
        .reg = TAS_REG_PCM,
        .bytes = 3,
        .max = ARRAY_SIZE(mixer_volume_table),
        .table = mixer_volume_table,
};

static struct tumbler_mono_vol tumbler_bass_vol_info = {
        .index = VOL_IDX_BASS,
        .reg = TAS_REG_BASS,
        .bytes = 1,
        .max = ARRAY_SIZE(bass_volume_table),
        .table = bass_volume_table,
};

static struct tumbler_mono_vol tumbler_treble_vol_info = {
        .index = VOL_IDX_TREBLE,
        .reg = TAS_REG_TREBLE,
        .bytes = 1,
        .max = ARRAY_SIZE(treble_volume_table),
        .table = treble_volume_table,
};

/* TAS3004 mono volumes */
static struct tumbler_mono_vol snapper_bass_vol_info = {
        .index = VOL_IDX_BASS,
        .reg = TAS_REG_BASS,
        .bytes = 1,
        .max = ARRAY_SIZE(snapper_bass_volume_table),
        .table = snapper_bass_volume_table,
};

static struct tumbler_mono_vol snapper_treble_vol_info = {
        .index = VOL_IDX_TREBLE,
        .reg = TAS_REG_TREBLE,
        .bytes = 1,
        .max = ARRAY_SIZE(snapper_treble_volume_table),
        .table = snapper_treble_volume_table,
};


#define DEFINE_MONO(xname,type) { \
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
        .name = xname, \
        .info = tumbler_info_mono, \
        .get = tumbler_get_mono, \
        .put = tumbler_put_mono, \
        .private_value = (unsigned long)(&tumbler_##type##_vol_info), \
}

#define DEFINE_SNAPPER_MONO(xname,type) { \
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
        .name = xname, \
        .info = tumbler_info_mono, \
        .get = tumbler_get_mono, \
        .put = tumbler_put_mono, \
        .private_value = (unsigned long)(&snapper_##type##_vol_info), \
}


/*
 * snapper mixer volumes
 */

static int snapper_set_mix_vol1(struct pmac_tumbler *mix, int idx, int ch, int reg)
{
        int i, j, vol;
        unsigned char block[9];

        vol = mix->mix_vol[idx][ch];
        if (vol >= ARRAY_SIZE(mixer_volume_table)) {
                vol = ARRAY_SIZE(mixer_volume_table) - 1;
                mix->mix_vol[idx][ch] = vol;
        }

        for (i = 0; i < 3; i++) {
                vol = mix->mix_vol[i][ch];
                vol = mixer_volume_table[vol];
                for (j = 0; j < 3; j++)
                        block[i * 3 + j] = (vol >> ((2 - j) * 8)) & 0xff;
        }
        if (i2c_smbus_write_i2c_block_data(mix->i2c.client, reg,
                                           9, block) < 0) {
                snd_printk("failed to set mono volume %d\n", reg);
                return -EINVAL;
        }
        return 0;
}

static int snapper_set_mix_vol(struct pmac_tumbler *mix, int idx)
{
        if (! mix->i2c.client)
                return -ENODEV;
        if (snapper_set_mix_vol1(mix, idx, 0, TAS_REG_LMIX) < 0 ||
            snapper_set_mix_vol1(mix, idx, 1, TAS_REG_RMIX) < 0)
                return -EINVAL;
        return 0;
}

static int snapper_info_mix(struct snd_kcontrol *kcontrol,
                            struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = ARRAY_SIZE(mixer_volume_table) - 1;
        return 0;
}

static int snapper_get_mix(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol)
{
        int idx = (int)kcontrol->private_value;
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        if (! (mix = chip->mixer_data))
                return -ENODEV;
        ucontrol->value.integer.value[0] = mix->mix_vol[idx][0];
        ucontrol->value.integer.value[1] = mix->mix_vol[idx][1];
        return 0;
}

static int snapper_put_mix(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol)
{
        int idx = (int)kcontrol->private_value;
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        unsigned int vol[2];
        int change;

        if (! (mix = chip->mixer_data))
                return -ENODEV;
        vol[0] = ucontrol->value.integer.value[0];
        vol[1] = ucontrol->value.integer.value[1];
        if (vol[0] >= ARRAY_SIZE(mixer_volume_table) ||
            vol[1] >= ARRAY_SIZE(mixer_volume_table))
                return -EINVAL;
        change = mix->mix_vol[idx][0] != vol[0] ||
                mix->mix_vol[idx][1] != vol[1];
        if (change) {
                mix->mix_vol[idx][0] = vol[0];
                mix->mix_vol[idx][1] = vol[1];
                snapper_set_mix_vol(mix, idx);
        }
        return change;
}


/*
 * mute switches. FIXME: Turn that into software mute when both outputs are muted
 * to avoid codec reset on ibook M7
 */

enum { TUMBLER_MUTE_HP, TUMBLER_MUTE_AMP, TUMBLER_MUTE_LINE };

static int tumbler_get_mute_switch(struct snd_kcontrol *kcontrol,
                                   struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        struct pmac_gpio *gp;
        if (! (mix = chip->mixer_data))
                return -ENODEV;
        switch(kcontrol->private_value) {
        case TUMBLER_MUTE_HP:
                gp = &mix->hp_mute;     break;
        case TUMBLER_MUTE_AMP:
                gp = &mix->amp_mute;    break;
        case TUMBLER_MUTE_LINE:
                gp = &mix->line_mute;   break;
        default:
                gp = NULL;
        }
        if (gp == NULL)
                return -EINVAL;
        ucontrol->value.integer.value[0] = !check_audio_gpio(gp);
        return 0;
}

static int tumbler_put_mute_switch(struct snd_kcontrol *kcontrol,
                                   struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix;
        struct pmac_gpio *gp;
        int val;
#ifdef PMAC_SUPPORT_AUTOMUTE
        if (chip->update_automute && chip->auto_mute)
                return 0; /* don't touch in the auto-mute mode */
#endif  
        if (! (mix = chip->mixer_data))
                return -ENODEV;
        switch(kcontrol->private_value) {
        case TUMBLER_MUTE_HP:
                gp = &mix->hp_mute;     break;
        case TUMBLER_MUTE_AMP:
                gp = &mix->amp_mute;    break;
        case TUMBLER_MUTE_LINE:
                gp = &mix->line_mute;   break;
        default:
                gp = NULL;
        }
        if (gp == NULL)
                return -EINVAL;
        val = ! check_audio_gpio(gp);
        if (val != ucontrol->value.integer.value[0]) {
                write_audio_gpio(gp, ! ucontrol->value.integer.value[0]);
                return 1;
        }
        return 0;
}

static int snapper_set_capture_source(struct pmac_tumbler *mix)
{
        if (! mix->i2c.client)
                return -ENODEV;
        if (mix->capture_source)
                mix->acs = mix->acs |= 2;
        else
                mix->acs &= ~2;
        return i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
}

static int snapper_info_capture_source(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_info *uinfo)
{
        static char *texts[2] = {
                "Line", "Mic"
        };
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = 2;
        if (uinfo->value.enumerated.item > 1)
                uinfo->value.enumerated.item = 1;
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}

static int snapper_get_capture_source(struct snd_kcontrol *kcontrol,
                                      struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix = chip->mixer_data;

        ucontrol->value.enumerated.item[0] = mix->capture_source;
        return 0;
}

static int snapper_put_capture_source(struct snd_kcontrol *kcontrol,
                                      struct snd_ctl_elem_value *ucontrol)
{
        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
        struct pmac_tumbler *mix = chip->mixer_data;
        int change;

        change = ucontrol->value.enumerated.item[0] != mix->capture_source;
        if (change) {
                mix->capture_source = !!ucontrol->value.enumerated.item[0];
                snapper_set_capture_source(mix);
        }
        return change;
}

#define DEFINE_SNAPPER_MIX(xname,idx,ofs) { \
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
        .name = xname, \
        .info = snapper_info_mix, \
        .get = snapper_get_mix, \
        .put = snapper_put_mix, \
        .index = idx,\
        .private_value = ofs, \
}


/*
 */
static struct snd_kcontrol_new tumbler_mixers[] __initdata = {
        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .name = "Master Playback Volume",
          .info = tumbler_info_master_volume,
          .get = tumbler_get_master_volume,
          .put = tumbler_put_master_volume
        },
        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .name = "Master Playback Switch",
          .info = snd_pmac_boolean_stereo_info,
          .get = tumbler_get_master_switch,
          .put = tumbler_put_master_switch
        },
        DEFINE_MONO("Tone Control - Bass", bass),
        DEFINE_MONO("Tone Control - Treble", treble),
        DEFINE_MONO("PCM Playback Volume", pcm),
        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .name = "DRC Range",
          .info = tumbler_info_drc_value,
          .get = tumbler_get_drc_value,
          .put = tumbler_put_drc_value
        },
};

static struct snd_kcontrol_new snapper_mixers[] __initdata = {
        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .name = "Master Playback Volume",
          .info = tumbler_info_master_volume,
          .get = tumbler_get_master_volume,
          .put = tumbler_put_master_volume
        },
        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .name = "Master Playback Switch",
          .info = snd_pmac_boolean_stereo_info,
          .get = tumbler_get_master_switch,
          .put = tumbler_put_master_switch
        },
        DEFINE_SNAPPER_MIX("PCM Playback Volume", 0, VOL_IDX_PCM),
        DEFINE_SNAPPER_MIX("PCM Playback Volume", 1, VOL_IDX_PCM2),
        DEFINE_SNAPPER_MIX("Monitor Mix Volume", 0, VOL_IDX_ADC),
        DEFINE_SNAPPER_MONO("Tone Control - Bass", bass),
        DEFINE_SNAPPER_MONO("Tone Control - Treble", treble),
        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .name = "DRC Range",
          .info = tumbler_info_drc_value,
          .get = tumbler_get_drc_value,
          .put = tumbler_put_drc_value
        },
        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .name = "Input Source", /* FIXME: "Capture Source" doesn't work properly */
          .info = snapper_info_capture_source,
          .get = snapper_get_capture_source,
          .put = snapper_put_capture_source
        },
};

static struct snd_kcontrol_new tumbler_hp_sw __initdata = {
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Headphone Playback Switch",
        .info = snd_pmac_boolean_mono_info,
        .get = tumbler_get_mute_switch,
        .put = tumbler_put_mute_switch,
        .private_value = TUMBLER_MUTE_HP,
};
static struct snd_kcontrol_new tumbler_speaker_sw __initdata = {
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "PC Speaker Playback Switch",
        .info = snd_pmac_boolean_mono_info,
        .get = tumbler_get_mute_switch,
        .put = tumbler_put_mute_switch,
        .private_value = TUMBLER_MUTE_AMP,
};
static struct snd_kcontrol_new tumbler_lineout_sw __initdata = {
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Line Out Playback Switch",
        .info = snd_pmac_boolean_mono_info,
        .get = tumbler_get_mute_switch,
        .put = tumbler_put_mute_switch,
        .private_value = TUMBLER_MUTE_LINE,
};
static struct snd_kcontrol_new tumbler_drc_sw __initdata = {
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "DRC Switch",
        .info = snd_pmac_boolean_mono_info,
        .get = tumbler_get_drc_switch,
        .put = tumbler_put_drc_switch
};


#ifdef PMAC_SUPPORT_AUTOMUTE
/*
 * auto-mute stuffs
 */
static int tumbler_detect_headphone(struct snd_pmac *chip)
{
        struct pmac_tumbler *mix = chip->mixer_data;
        int detect = 0;

        if (mix->hp_detect.addr)
                detect |= read_audio_gpio(&mix->hp_detect);
        return detect;
}

static int tumbler_detect_lineout(struct snd_pmac *chip)
{
        struct pmac_tumbler *mix = chip->mixer_data;
        int detect = 0;

        if (mix->line_detect.addr)
                detect |= read_audio_gpio(&mix->line_detect);
        return detect;
}

static void check_mute(struct snd_pmac *chip, struct pmac_gpio *gp, int val, int do_notify,
                       struct snd_kcontrol *sw)
{
        if (check_audio_gpio(gp) != val) {
                write_audio_gpio(gp, val);
                if (do_notify)
                        snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                                       &sw->id);
        }
}

static struct work_struct device_change;
static struct snd_pmac *device_change_chip;

static void device_change_handler(struct work_struct *work)
{
        struct snd_pmac *chip = device_change_chip;
        struct pmac_tumbler *mix;
        int headphone, lineout;

        if (!chip)
                return;

        mix = chip->mixer_data;
        if (snd_BUG_ON(!mix))
                return;

        headphone = tumbler_detect_headphone(chip);
        lineout = tumbler_detect_lineout(chip);

        DBG("headphone: %d, lineout: %d\n", headphone, lineout);

        if (headphone || lineout) {
                /* unmute headphone/lineout & mute speaker */
                if (headphone)
                        check_mute(chip, &mix->hp_mute, 0, mix->auto_mute_notify,
                                   chip->master_sw_ctl);
                if (lineout && mix->line_mute.addr != 0)
                        check_mute(chip, &mix->line_mute, 0, mix->auto_mute_notify,
                                   chip->lineout_sw_ctl);
                if (mix->anded_reset)
                        msleep(10);
                check_mute(chip, &mix->amp_mute, 1, mix->auto_mute_notify,
                           chip->speaker_sw_ctl);
        } else {
                /* unmute speaker, mute others */
                check_mute(chip, &mix->amp_mute, 0, mix->auto_mute_notify,
                           chip->speaker_sw_ctl);
                if (mix->anded_reset)
                        msleep(10);
                check_mute(chip, &mix->hp_mute, 1, mix->auto_mute_notify,
                           chip->master_sw_ctl);
                if (mix->line_mute.addr != 0)
                        check_mute(chip, &mix->line_mute, 1, mix->auto_mute_notify,
                                   chip->lineout_sw_ctl);
        }
        if (mix->auto_mute_notify)
                snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                                       &chip->hp_detect_ctl->id);

#ifdef CONFIG_SND_POWERMAC_AUTO_DRC
        mix->drc_enable = ! (headphone || lineout);
        if (mix->auto_mute_notify)
                snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                               &chip->drc_sw_ctl->id);
        if (chip->model == PMAC_TUMBLER)
                tumbler_set_drc(mix);
        else
                snapper_set_drc(mix);
#endif

        /* reset the master volume so the correct amplification is applied */
        tumbler_set_master_volume(mix);
}

static void tumbler_update_automute(struct snd_pmac *chip, int do_notify)
{
        if (chip->auto_mute) {
                struct pmac_tumbler *mix;
                mix = chip->mixer_data;
                if (snd_BUG_ON(!mix))
                        return;
                mix->auto_mute_notify = do_notify;
                schedule_work(&device_change);
        }
}
#endif /* PMAC_SUPPORT_AUTOMUTE */


/* interrupt - headphone plug changed */
static irqreturn_t headphone_intr(int irq, void *devid)
{
        struct snd_pmac *chip = devid;
        if (chip->update_automute && chip->initialized) {
                chip->update_automute(chip, 1);
                return IRQ_HANDLED;
        }
        return IRQ_NONE;
}

/* look for audio-gpio device */
static struct device_node *find_audio_device(const char *name)
{
        struct device_node *gpiop;
        struct device_node *np;
  
        gpiop = of_find_node_by_name(NULL, "gpio");
        if (! gpiop)
                return NULL;
  
        for (np = of_get_next_child(gpiop, NULL); np;
                        np = of_get_next_child(gpiop, np)) {
                const char *property = of_get_property(np, "audio-gpio", NULL);
                if (property && strcmp(property, name) == 0)
                        break;
        }  
        of_node_put(gpiop);
        return np;
}

/* look for audio-gpio device */
static struct device_node *find_compatible_audio_device(const char *name)
{
        struct device_node *gpiop;
        struct device_node *np;
  
        gpiop = of_find_node_by_name(NULL, "gpio");
        if (!gpiop)
                return NULL;
  
        for (np = of_get_next_child(gpiop, NULL); np;
                        np = of_get_next_child(gpiop, np)) {
                if (of_device_is_compatible(np, name))
                        break;
        }  
        of_node_put(gpiop);
        return np;
}

/* find an audio device and get its address */
static long tumbler_find_device(const char *device, const char *platform,
                                struct pmac_gpio *gp, int is_compatible)
{
        struct device_node *node;
        const u32 *base;
        u32 addr;
        long ret;

        if (is_compatible)
                node = find_compatible_audio_device(device);
        else
                node = find_audio_device(device);
        if (! node) {
                DBG("(W) cannot find audio device %s !\n", device);
                snd_printdd("cannot find device %s\n", device);
                return -ENODEV;
        }

        base = of_get_property(node, "AAPL,address", NULL);
        if (! base) {
                base = of_get_property(node, "reg", NULL);
                if (!base) {
                        DBG("(E) cannot find address for device %s !\n", device);
                        snd_printd("cannot find address for device %s\n", device);
                        of_node_put(node);
                        return -ENODEV;
                }
                addr = *base;
                if (addr < 0x50)
                        addr += 0x50;
        } else
                addr = *base;

        gp->addr = addr & 0x0000ffff;
        /* Try to find the active state, default to 0 ! */
        base = of_get_property(node, "audio-gpio-active-state", NULL);
        if (base) {
                gp->active_state = *base;
                gp->active_val = (*base) ? 0x5 : 0x4;
                gp->inactive_val = (*base) ? 0x4 : 0x5;
        } else {
                const u32 *prop = NULL;
                gp->active_state = 0;
                gp->active_val = 0x4;
                gp->inactive_val = 0x5;
                /* Here are some crude hacks to extract the GPIO polarity and
                 * open collector informations out of the do-platform script
                 * as we don't yet have an interpreter for these things
                 */
                if (platform)
                        prop = of_get_property(node, platform, NULL);
                if (prop) {
                        if (prop[3] == 0x9 && prop[4] == 0x9) {
                                gp->active_val = 0xd;
                                gp->inactive_val = 0xc;
                        }
                        if (prop[3] == 0x1 && prop[4] == 0x1) {
                                gp->active_val = 0x5;
                                gp->inactive_val = 0x4;
                        }
                }
        }

        DBG("(I) GPIO device %s found, offset: %x, active state: %d !\n",
            device, gp->addr, gp->active_state);

        ret = irq_of_parse_and_map(node, 0);
        of_node_put(node);
        return ret;
}

/* reset audio */
static void tumbler_reset_audio(struct snd_pmac *chip)
{
        struct pmac_tumbler *mix = chip->mixer_data;

        if (mix->anded_reset) {
                DBG("(I) codec anded reset !\n");
                write_audio_gpio(&mix->hp_mute, 0);
                write_audio_gpio(&mix->amp_mute, 0);
                msleep(200);
                write_audio_gpio(&mix->hp_mute, 1);
                write_audio_gpio(&mix->amp_mute, 1);
                msleep(100);
                write_audio_gpio(&mix->hp_mute, 0);
                write_audio_gpio(&mix->amp_mute, 0);
                msleep(100);
        } else {
                DBG("(I) codec normal reset !\n");

                write_audio_gpio(&mix->audio_reset, 0);
                msleep(200);
                write_audio_gpio(&mix->audio_reset, 1);
                msleep(100);
                write_audio_gpio(&mix->audio_reset, 0);
                msleep(100);
        }
}

#ifdef CONFIG_PM
/* suspend mixer */
static void tumbler_suspend(struct snd_pmac *chip)
{
        struct pmac_tumbler *mix = chip->mixer_data;

        if (mix->headphone_irq >= 0)
                disable_irq(mix->headphone_irq);
        if (mix->lineout_irq >= 0)
                disable_irq(mix->lineout_irq);
        mix->save_master_switch[0] = mix->master_switch[0];
        mix->save_master_switch[1] = mix->master_switch[1];
        mix->save_master_vol[0] = mix->master_vol[0];
        mix->save_master_vol[1] = mix->master_vol[1];
        mix->master_switch[0] = mix->master_switch[1] = 0;
        tumbler_set_master_volume(mix);
        if (!mix->anded_reset) {
                write_audio_gpio(&mix->amp_mute, 1);
                write_audio_gpio(&mix->hp_mute, 1);
        }
        if (chip->model == PMAC_SNAPPER) {
                mix->acs |= 1;
                i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
        }
        if (mix->anded_reset) {
                write_audio_gpio(&mix->amp_mute, 1);
                write_audio_gpio(&mix->hp_mute, 1);
        } else
                write_audio_gpio(&mix->audio_reset, 1);
}

/* resume mixer */
static void tumbler_resume(struct snd_pmac *chip)
{
        struct pmac_tumbler *mix = chip->mixer_data;

        mix->acs &= ~1;
        mix->master_switch[0] = mix->save_master_switch[0];
        mix->master_switch[1] = mix->save_master_switch[1];
        mix->master_vol[0] = mix->save_master_vol[0];
        mix->master_vol[1] = mix->save_master_vol[1];
        tumbler_reset_audio(chip);
        if (mix->i2c.client && mix->i2c.init_client) {
                if (mix->i2c.init_client(&mix->i2c) < 0)
                        printk(KERN_ERR "tumbler_init_client error\n");
        } else
                printk(KERN_ERR "tumbler: i2c is not initialized\n");
        if (chip->model == PMAC_TUMBLER) {
                tumbler_set_mono_volume(mix, &tumbler_pcm_vol_info);
                tumbler_set_mono_volume(mix, &tumbler_bass_vol_info);
                tumbler_set_mono_volume(mix, &tumbler_treble_vol_info);
                tumbler_set_drc(mix);
        } else {
                snapper_set_mix_vol(mix, VOL_IDX_PCM);
                snapper_set_mix_vol(mix, VOL_IDX_PCM2);
                snapper_set_mix_vol(mix, VOL_IDX_ADC);
                tumbler_set_mono_volume(mix, &snapper_bass_vol_info);
                tumbler_set_mono_volume(mix, &snapper_treble_vol_info);
                snapper_set_drc(mix);
                snapper_set_capture_source(mix);
        }
        tumbler_set_master_volume(mix);
        if (chip->update_automute)
                chip->update_automute(chip, 0);
        if (mix->headphone_irq >= 0) {
                unsigned char val;

                enable_irq(mix->headphone_irq);
                /* activate headphone status interrupts */
                val = do_gpio_read(&mix->hp_detect);
                do_gpio_write(&mix->hp_detect, val | 0x80);
        }
        if (mix->lineout_irq >= 0)
                enable_irq(mix->lineout_irq);
}
#endif

/* initialize tumbler */
static int __init tumbler_init(struct snd_pmac *chip)
{
        int irq;
        struct pmac_tumbler *mix = chip->mixer_data;

        if (tumbler_find_device("audio-hw-reset",
                                "platform-do-hw-reset",
                                &mix->audio_reset, 0) < 0)
                tumbler_find_device("hw-reset",
                                    "platform-do-hw-reset",
                                    &mix->audio_reset, 1);
        if (tumbler_find_device("amp-mute",
                                "platform-do-amp-mute",
                                &mix->amp_mute, 0) < 0)
                tumbler_find_device("amp-mute",
                                    "platform-do-amp-mute",
                                    &mix->amp_mute, 1);
        if (tumbler_find_device("headphone-mute",
                                "platform-do-headphone-mute",
                                &mix->hp_mute, 0) < 0)
                tumbler_find_device("headphone-mute",
                                    "platform-do-headphone-mute",
                                    &mix->hp_mute, 1);
        if (tumbler_find_device("line-output-mute",
                                "platform-do-lineout-mute",
                                &mix->line_mute, 0) < 0)
                tumbler_find_device("line-output-mute",
                                   "platform-do-lineout-mute",
                                    &mix->line_mute, 1);
        irq = tumbler_find_device("headphone-detect",
                                  NULL, &mix->hp_detect, 0);
        if (irq <= NO_IRQ)
                irq = tumbler_find_device("headphone-detect",
                                          NULL, &mix->hp_detect, 1);
        if (irq <= NO_IRQ)
                irq = tumbler_find_device("keywest-gpio15",
                                          NULL, &mix->hp_detect, 1);
        mix->headphone_irq = irq;
        irq = tumbler_find_device("line-output-detect",
                                  NULL, &mix->line_detect, 0);
        if (irq <= NO_IRQ)
                irq = tumbler_find_device("line-output-detect",
                                          NULL, &mix->line_detect, 1);
        mix->lineout_irq = irq;

        tumbler_reset_audio(chip);
  
        return 0;
}

static void tumbler_cleanup(struct snd_pmac *chip)
{
        struct pmac_tumbler *mix = chip->mixer_data;
        if (! mix)
                return;

        if (mix->headphone_irq >= 0)
                free_irq(mix->headphone_irq, chip);
        if (mix->lineout_irq >= 0)
                free_irq(mix->lineout_irq, chip);
        tumbler_gpio_free(&mix->audio_reset);
        tumbler_gpio_free(&mix->amp_mute);
        tumbler_gpio_free(&mix->hp_mute);
        tumbler_gpio_free(&mix->hp_detect);
        snd_pmac_keywest_cleanup(&mix->i2c);
        kfree(mix);
        chip->mixer_data = NULL;
}

/* exported */
int __init snd_pmac_tumbler_init(struct snd_pmac *chip)
{
        int i, err;
        struct pmac_tumbler *mix;
        const u32 *paddr;
        struct device_node *tas_node, *np;
        char *chipname;

        request_module("i2c-powermac");

        mix = kzalloc(sizeof(*mix), GFP_KERNEL);
        if (! mix)
                return -ENOMEM;
        mix->headphone_irq = -1;

        chip->mixer_data = mix;
        chip->mixer_free = tumbler_cleanup;
        mix->anded_reset = 0;
        mix->reset_on_sleep = 1;

        for (np = chip->node->child; np; np = np->sibling) {
                if (!strcmp(np->name, "sound")) {
                        if (of_get_property(np, "has-anded-reset", NULL))
                                mix->anded_reset = 1;
                        if (of_get_property(np, "layout-id", NULL))
                                mix->reset_on_sleep = 0;
                        break;
                }
        }
        if ((err = tumbler_init(chip)) < 0)
                return err;

        /* set up TAS */
        tas_node = of_find_node_by_name(NULL, "deq");
        if (tas_node == NULL)
                tas_node = of_find_node_by_name(NULL, "codec");
        if (tas_node == NULL)
                return -ENODEV;

        paddr = of_get_property(tas_node, "i2c-address", NULL);
        if (paddr == NULL)
                paddr = of_get_property(tas_node, "reg", NULL);
        if (paddr)
                mix->i2c.addr = (*paddr) >> 1;
        else
                mix->i2c.addr = TAS_I2C_ADDR;
        of_node_put(tas_node);

        DBG("(I) TAS i2c address is: %x\n", mix->i2c.addr);

        if (chip->model == PMAC_TUMBLER) {
                mix->i2c.init_client = tumbler_init_client;
                mix->i2c.name = "TAS3001c";
                chipname = "Tumbler";
        } else {
                mix->i2c.init_client = snapper_init_client;
                mix->i2c.name = "TAS3004";
                chipname = "Snapper";
        }

        if ((err = snd_pmac_keywest_init(&mix->i2c)) < 0)
                return err;

        /*
         * build mixers
         */
        sprintf(chip->card->mixername, "PowerMac %s", chipname);

        if (chip->model == PMAC_TUMBLER) {
                for (i = 0; i < ARRAY_SIZE(tumbler_mixers); i++) {
                        if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&tumbler_mixers[i], chip))) < 0)
                                return err;
                }
        } else {
                for (i = 0; i < ARRAY_SIZE(snapper_mixers); i++) {
                        if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snapper_mixers[i], chip))) < 0)
                                return err;
                }
        }
        chip->master_sw_ctl = snd_ctl_new1(&tumbler_hp_sw, chip);
        if ((err = snd_ctl_add(chip->card, chip->master_sw_ctl)) < 0)
                return err;
        chip->speaker_sw_ctl = snd_ctl_new1(&tumbler_speaker_sw, chip);
        if ((err = snd_ctl_add(chip->card, chip->speaker_sw_ctl)) < 0)
                return err;
        if (mix->line_mute.addr != 0) {
                chip->lineout_sw_ctl = snd_ctl_new1(&tumbler_lineout_sw, chip);
                if ((err = snd_ctl_add(chip->card, chip->lineout_sw_ctl)) < 0)
                        return err;
        }
        chip->drc_sw_ctl = snd_ctl_new1(&tumbler_drc_sw, chip);
        if ((err = snd_ctl_add(chip->card, chip->drc_sw_ctl)) < 0)
                return err;

        /* set initial DRC range to 60% */
        if (chip->model == PMAC_TUMBLER)
                mix->drc_range = (TAS3001_DRC_MAX * 6) / 10;
        else
                mix->drc_range = (TAS3004_DRC_MAX * 6) / 10;
        mix->drc_enable = 1; /* will be changed later if AUTO_DRC is set */
        if (chip->model == PMAC_TUMBLER)
                tumbler_set_drc(mix);
        else
                snapper_set_drc(mix);

#ifdef CONFIG_PM
        chip->suspend = tumbler_suspend;
        chip->resume = tumbler_resume;
#endif

        INIT_WORK(&device_change, device_change_handler);
        device_change_chip = chip;

#ifdef PMAC_SUPPORT_AUTOMUTE
        if ((mix->headphone_irq >=0 || mix->lineout_irq >= 0)
            && (err = snd_pmac_add_automute(chip)) < 0)
                return err;
        chip->detect_headphone = tumbler_detect_headphone;
        chip->update_automute = tumbler_update_automute;
        tumbler_update_automute(chip, 0); /* update the status only */

        /* activate headphone status interrupts */
        if (mix->headphone_irq >= 0) {
                unsigned char val;
                if ((err = request_irq(mix->headphone_irq, headphone_intr, 0,
                                       "Sound Headphone Detection", chip)) < 0)
                        return 0;
                /* activate headphone status interrupts */
                val = do_gpio_read(&mix->hp_detect);
                do_gpio_write(&mix->hp_detect, val | 0x80);
        }
        if (mix->lineout_irq >= 0) {
                unsigned char val;
                if ((err = request_irq(mix->lineout_irq, headphone_intr, 0,
                                       "Sound Lineout Detection", chip)) < 0)
                        return 0;
                /* activate headphone status interrupts */
                val = do_gpio_read(&mix->line_detect);
                do_gpio_write(&mix->line_detect, val | 0x80);
        }
#endif

        return 0;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading