[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/emu10k1/io.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_emu10k1_ptr_read
  2. snd_emu10k1_ptr_write
  3. snd_emu10k1_ptr20_read
  4. snd_emu10k1_ptr20_write
  5. snd_emu10k1_spi_write
  6. snd_emu10k1_i2c_write
  7. snd_emu1010_fpga_write
  8. snd_emu1010_fpga_read
  9. snd_emu1010_fpga_link_dst_src_write
  10. snd_emu10k1_intr_enable
  11. snd_emu10k1_intr_disable
  12. snd_emu10k1_voice_intr_enable
  13. snd_emu10k1_voice_intr_disable
  14. snd_emu10k1_voice_intr_ack
  15. snd_emu10k1_voice_half_loop_intr_enable
  16. snd_emu10k1_voice_half_loop_intr_disable
  17. snd_emu10k1_voice_half_loop_intr_ack
  18. snd_emu10k1_voice_set_loop_stop
  19. snd_emu10k1_voice_clear_loop_stop
  20. snd_emu10k1_wait
  21. snd_emu10k1_ac97_read
  22. snd_emu10k1_ac97_write
  23. snd_emu10k1_rate_to_pitch

/*
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *                   Creative Labs, Inc.
 *  Routines for control of EMU10K1 chips
 *
 *  BUGS:
 *    --
 *
 *  TODO:
 *    --
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <linux/time.h>
#include <sound/core.h>
#include <sound/emu10k1.h>
#include <linux/delay.h>
#include "p17v.h"

unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
{
        unsigned long flags;
        unsigned int regptr, val;
        unsigned int mask;

        mask = emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK;
        regptr = ((reg << 16) & mask) | (chn & PTR_CHANNELNUM_MASK);

        if (reg & 0xff000000) {
                unsigned char size, offset;
                
                size = (reg >> 24) & 0x3f;
                offset = (reg >> 16) & 0x1f;
                mask = ((1 << size) - 1) << offset;
                
                spin_lock_irqsave(&emu->emu_lock, flags);
                outl(regptr, emu->port + PTR);
                val = inl(emu->port + DATA);
                spin_unlock_irqrestore(&emu->emu_lock, flags);
                
                return (val & mask) >> offset;
        } else {
                spin_lock_irqsave(&emu->emu_lock, flags);
                outl(regptr, emu->port + PTR);
                val = inl(emu->port + DATA);
                spin_unlock_irqrestore(&emu->emu_lock, flags);
                return val;
        }
}

EXPORT_SYMBOL(snd_emu10k1_ptr_read);

void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
{
        unsigned int regptr;
        unsigned long flags;
        unsigned int mask;

        if (!emu) {
                snd_printk(KERN_ERR "ptr_write: emu is null!\n");
                dump_stack();
                return;
        }
        mask = emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK;
        regptr = ((reg << 16) & mask) | (chn & PTR_CHANNELNUM_MASK);

        if (reg & 0xff000000) {
                unsigned char size, offset;

                size = (reg >> 24) & 0x3f;
                offset = (reg >> 16) & 0x1f;
                mask = ((1 << size) - 1) << offset;
                data = (data << offset) & mask;

                spin_lock_irqsave(&emu->emu_lock, flags);
                outl(regptr, emu->port + PTR);
                data |= inl(emu->port + DATA) & ~mask;
                outl(data, emu->port + DATA);
                spin_unlock_irqrestore(&emu->emu_lock, flags);          
        } else {
                spin_lock_irqsave(&emu->emu_lock, flags);
                outl(regptr, emu->port + PTR);
                outl(data, emu->port + DATA);
                spin_unlock_irqrestore(&emu->emu_lock, flags);
        }
}

EXPORT_SYMBOL(snd_emu10k1_ptr_write);

unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu, 
                                          unsigned int reg, 
                                          unsigned int chn)
{
        unsigned long flags;
        unsigned int regptr, val;
  
        regptr = (reg << 16) | chn;

        spin_lock_irqsave(&emu->emu_lock, flags);
        outl(regptr, emu->port + 0x20 + PTR);
        val = inl(emu->port + 0x20 + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
        return val;
}

void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu, 
                                   unsigned int reg, 
                                   unsigned int chn, 
                                   unsigned int data)
{
        unsigned int regptr;
        unsigned long flags;

        regptr = (reg << 16) | chn;

        spin_lock_irqsave(&emu->emu_lock, flags);
        outl(regptr, emu->port + 0x20 + PTR);
        outl(data, emu->port + 0x20 + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
                                   unsigned int data)
{
        unsigned int reset, set;
        unsigned int reg, tmp;
        int n, result;
        int err = 0;

        /* This function is not re-entrant, so protect against it. */
        spin_lock(&emu->spi_lock);
        if (emu->card_capabilities->ca0108_chip)
                reg = 0x3c; /* PTR20, reg 0x3c */
        else {
                /* For other chip types the SPI register
                 * is currently unknown. */
                err = 1;
                goto spi_write_exit;
        }
        if (data > 0xffff) {
                /* Only 16bit values allowed */
                err = 1;
                goto spi_write_exit;
        }

        tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
        reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
        set = reset | 0x10000; /* Set xxx1xxxx */
        snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
        tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
        snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
        result = 1;
        /* Wait for status bit to return to 0 */
        for (n = 0; n < 100; n++) {
                udelay(10);
                tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
                if (!(tmp & 0x10000)) {
                        result = 0;
                        break;
                }
        }
        if (result) {
                /* Timed out */
                err = 1;
                goto spi_write_exit;
        }
        snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
        tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
        err = 0;
spi_write_exit:
        spin_unlock(&emu->spi_lock);
        return err;
}

/* The ADC does not support i2c read, so only write is implemented */
int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
                                u32 reg,
                                u32 value)
{
        u32 tmp;
        int timeout = 0;
        int status;
        int retry;
        int err = 0;

        if ((reg > 0x7f) || (value > 0x1ff)) {
                snd_printk(KERN_ERR "i2c_write: invalid values.\n");
                return -EINVAL;
        }

        /* This function is not re-entrant, so protect against it. */
        spin_lock(&emu->i2c_lock);

        tmp = reg << 25 | value << 16;

        /* This controls the I2C connected to the WM8775 ADC Codec */
        snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
        tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */

        for (retry = 0; retry < 10; retry++) {
                /* Send the data to i2c */
                tmp = 0;
                tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
                snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);

                /* Wait till the transaction ends */
                while (1) {
                        mdelay(1);
                        status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
                        timeout++;
                        if ((status & I2C_A_ADC_START) == 0)
                                break;

                        if (timeout > 1000) {
                                snd_printk("emu10k1:I2C:timeout status=0x%x\n", status);
                                break;
                        }
                }
                //Read back and see if the transaction is successful
                if ((status & I2C_A_ADC_ABORT) == 0)
                        break;
        }

        if (retry == 10) {
                snd_printk(KERN_ERR "Writing to ADC failed!\n");
                snd_printk(KERN_ERR "status=0x%x, reg=%d, value=%d\n",
                        status, reg, value);
                /* dump_stack(); */
                err = -EINVAL;
        }
    
        spin_unlock(&emu->i2c_lock);
        return err;
}

int snd_emu1010_fpga_write(struct snd_emu10k1 * emu, u32 reg, u32 value)
{
        unsigned long flags;

        if (reg > 0x3f)
                return 1;
        reg += 0x40; /* 0x40 upwards are registers. */
        if (value < 0 || value > 0x3f) /* 0 to 0x3f are values */
                return 1;
        spin_lock_irqsave(&emu->emu_lock, flags);
        outl(reg, emu->port + A_IOCFG);
        udelay(10);
        outl(reg | 0x80, emu->port + A_IOCFG);  /* High bit clocks the value into the fpga. */
        udelay(10);
        outl(value, emu->port + A_IOCFG);
        udelay(10);
        outl(value | 0x80 , emu->port + A_IOCFG);  /* High bit clocks the value into the fpga. */
        spin_unlock_irqrestore(&emu->emu_lock, flags);

        return 0;
}

int snd_emu1010_fpga_read(struct snd_emu10k1 * emu, u32 reg, u32 *value)
{
        unsigned long flags;
        if (reg > 0x3f)
                return 1;
        reg += 0x40; /* 0x40 upwards are registers. */
        spin_lock_irqsave(&emu->emu_lock, flags);
        outl(reg, emu->port + A_IOCFG);
        udelay(10);
        outl(reg | 0x80, emu->port + A_IOCFG);  /* High bit clocks the value into the fpga. */
        udelay(10);
        *value = ((inl(emu->port + A_IOCFG) >> 8) & 0x7f);
        spin_unlock_irqrestore(&emu->emu_lock, flags);

        return 0;
}

/* Each Destination has one and only one Source,
 * but one Source can feed any number of Destinations simultaneously.
 */
int snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 * emu, u32 dst, u32 src)
{
        snd_emu1010_fpga_write(emu, 0x00, ((dst >> 8) & 0x3f) );
        snd_emu1010_fpga_write(emu, 0x01, (dst & 0x3f) );
        snd_emu1010_fpga_write(emu, 0x02, ((src >> 8) & 0x3f) );
        snd_emu1010_fpga_write(emu, 0x03, (src & 0x3f) );

        return 0;
}

void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
        unsigned long flags;
        unsigned int enable;

        spin_lock_irqsave(&emu->emu_lock, flags);
        enable = inl(emu->port + INTE) | intrenb;
        outl(enable, emu->port + INTE);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
        unsigned long flags;
        unsigned int enable;

        spin_lock_irqsave(&emu->emu_lock, flags);
        enable = inl(emu->port + INTE) & ~intrenb;
        outl(enable, emu->port + INTE);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
        unsigned long flags;
        unsigned int val;

        spin_lock_irqsave(&emu->emu_lock, flags);
        /* voice interrupt */
        if (voicenum >= 32) {
                outl(CLIEH << 16, emu->port + PTR);
                val = inl(emu->port + DATA);
                val |= 1 << (voicenum - 32);
        } else {
                outl(CLIEL << 16, emu->port + PTR);
                val = inl(emu->port + DATA);
                val |= 1 << voicenum;
        }
        outl(val, emu->port + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
        unsigned long flags;
        unsigned int val;

        spin_lock_irqsave(&emu->emu_lock, flags);
        /* voice interrupt */
        if (voicenum >= 32) {
                outl(CLIEH << 16, emu->port + PTR);
                val = inl(emu->port + DATA);
                val &= ~(1 << (voicenum - 32));
        } else {
                outl(CLIEL << 16, emu->port + PTR);
                val = inl(emu->port + DATA);
                val &= ~(1 << voicenum);
        }
        outl(val, emu->port + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
{
        unsigned long flags;

        spin_lock_irqsave(&emu->emu_lock, flags);
        /* voice interrupt */
        if (voicenum >= 32) {
                outl(CLIPH << 16, emu->port + PTR);
                voicenum = 1 << (voicenum - 32);
        } else {
                outl(CLIPL << 16, emu->port + PTR);
                voicenum = 1 << voicenum;
        }
        outl(voicenum, emu->port + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
        unsigned long flags;
        unsigned int val;

        spin_lock_irqsave(&emu->emu_lock, flags);
        /* voice interrupt */
        if (voicenum >= 32) {
                outl(HLIEH << 16, emu->port + PTR);
                val = inl(emu->port + DATA);
                val |= 1 << (voicenum - 32);
        } else {
                outl(HLIEL << 16, emu->port + PTR);
                val = inl(emu->port + DATA);
                val |= 1 << voicenum;
        }
        outl(val, emu->port + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
        unsigned long flags;
        unsigned int val;

        spin_lock_irqsave(&emu->emu_lock, flags);
        /* voice interrupt */
        if (voicenum >= 32) {
                outl(HLIEH << 16, emu->port + PTR);
                val = inl(emu->port + DATA);
                val &= ~(1 << (voicenum - 32));
        } else {
                outl(HLIEL << 16, emu->port + PTR);
                val = inl(emu->port + DATA);
                val &= ~(1 << voicenum);
        }
        outl(val, emu->port + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
{
        unsigned long flags;

        spin_lock_irqsave(&emu->emu_lock, flags);
        /* voice interrupt */
        if (voicenum >= 32) {
                outl(HLIPH << 16, emu->port + PTR);
                voicenum = 1 << (voicenum - 32);
        } else {
                outl(HLIPL << 16, emu->port + PTR);
                voicenum = 1 << voicenum;
        }
        outl(voicenum, emu->port + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
{
        unsigned long flags;
        unsigned int sol;

        spin_lock_irqsave(&emu->emu_lock, flags);
        /* voice interrupt */
        if (voicenum >= 32) {
                outl(SOLEH << 16, emu->port + PTR);
                sol = inl(emu->port + DATA);
                sol |= 1 << (voicenum - 32);
        } else {
                outl(SOLEL << 16, emu->port + PTR);
                sol = inl(emu->port + DATA);
                sol |= 1 << voicenum;
        }
        outl(sol, emu->port + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
{
        unsigned long flags;
        unsigned int sol;

        spin_lock_irqsave(&emu->emu_lock, flags);
        /* voice interrupt */
        if (voicenum >= 32) {
                outl(SOLEH << 16, emu->port + PTR);
                sol = inl(emu->port + DATA);
                sol &= ~(1 << (voicenum - 32));
        } else {
                outl(SOLEL << 16, emu->port + PTR);
                sol = inl(emu->port + DATA);
                sol &= ~(1 << voicenum);
        }
        outl(sol, emu->port + DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
{
        volatile unsigned count;
        unsigned int newtime = 0, curtime;

        curtime = inl(emu->port + WC) >> 6;
        while (wait-- > 0) {
                count = 0;
                while (count++ < 16384) {
                        newtime = inl(emu->port + WC) >> 6;
                        if (newtime != curtime)
                                break;
                }
                if (count >= 16384)
                        break;
                curtime = newtime;
        }
}

unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
        struct snd_emu10k1 *emu = ac97->private_data;
        unsigned long flags;
        unsigned short val;

        spin_lock_irqsave(&emu->emu_lock, flags);
        outb(reg, emu->port + AC97ADDRESS);
        val = inw(emu->port + AC97DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
        return val;
}

void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
{
        struct snd_emu10k1 *emu = ac97->private_data;
        unsigned long flags;

        spin_lock_irqsave(&emu->emu_lock, flags);
        outb(reg, emu->port + AC97ADDRESS);
        outw(data, emu->port + AC97DATA);
        spin_unlock_irqrestore(&emu->emu_lock, flags);
}

/*
 *  convert rate to pitch
 */

unsigned int snd_emu10k1_rate_to_pitch(unsigned int rate)
{
        static u32 logMagTable[128] = {
                0x00000, 0x02dfc, 0x05b9e, 0x088e6, 0x0b5d6, 0x0e26f, 0x10eb3, 0x13aa2,
                0x1663f, 0x1918a, 0x1bc84, 0x1e72e, 0x2118b, 0x23b9a, 0x2655d, 0x28ed5,
                0x2b803, 0x2e0e8, 0x30985, 0x331db, 0x359eb, 0x381b6, 0x3a93d, 0x3d081,
                0x3f782, 0x41e42, 0x444c1, 0x46b01, 0x49101, 0x4b6c4, 0x4dc49, 0x50191,
                0x5269e, 0x54b6f, 0x57006, 0x59463, 0x5b888, 0x5dc74, 0x60029, 0x623a7,
                0x646ee, 0x66a00, 0x68cdd, 0x6af86, 0x6d1fa, 0x6f43c, 0x7164b, 0x73829,
                0x759d4, 0x77b4f, 0x79c9a, 0x7bdb5, 0x7dea1, 0x7ff5e, 0x81fed, 0x8404e,
                0x86082, 0x88089, 0x8a064, 0x8c014, 0x8df98, 0x8fef1, 0x91e20, 0x93d26,
                0x95c01, 0x97ab4, 0x9993e, 0x9b79f, 0x9d5d9, 0x9f3ec, 0xa11d8, 0xa2f9d,
                0xa4d3c, 0xa6ab5, 0xa8808, 0xaa537, 0xac241, 0xadf26, 0xafbe7, 0xb1885,
                0xb3500, 0xb5157, 0xb6d8c, 0xb899f, 0xba58f, 0xbc15e, 0xbdd0c, 0xbf899,
                0xc1404, 0xc2f50, 0xc4a7b, 0xc6587, 0xc8073, 0xc9b3f, 0xcb5ed, 0xcd07c,
                0xceaec, 0xd053f, 0xd1f73, 0xd398a, 0xd5384, 0xd6d60, 0xd8720, 0xda0c3,
                0xdba4a, 0xdd3b4, 0xded03, 0xe0636, 0xe1f4e, 0xe384a, 0xe512c, 0xe69f3,
                0xe829f, 0xe9b31, 0xeb3a9, 0xecc08, 0xee44c, 0xefc78, 0xf148a, 0xf2c83,
                0xf4463, 0xf5c2a, 0xf73da, 0xf8b71, 0xfa2f0, 0xfba57, 0xfd1a7, 0xfe8df
        };
        static char logSlopeTable[128] = {
                0x5c, 0x5c, 0x5b, 0x5a, 0x5a, 0x59, 0x58, 0x58,
                0x57, 0x56, 0x56, 0x55, 0x55, 0x54, 0x53, 0x53,
                0x52, 0x52, 0x51, 0x51, 0x50, 0x50, 0x4f, 0x4f,
                0x4e, 0x4d, 0x4d, 0x4d, 0x4c, 0x4c, 0x4b, 0x4b,
                0x4a, 0x4a, 0x49, 0x49, 0x48, 0x48, 0x47, 0x47,
                0x47, 0x46, 0x46, 0x45, 0x45, 0x45, 0x44, 0x44,
                0x43, 0x43, 0x43, 0x42, 0x42, 0x42, 0x41, 0x41,
                0x41, 0x40, 0x40, 0x40, 0x3f, 0x3f, 0x3f, 0x3e,
                0x3e, 0x3e, 0x3d, 0x3d, 0x3d, 0x3c, 0x3c, 0x3c,
                0x3b, 0x3b, 0x3b, 0x3b, 0x3a, 0x3a, 0x3a, 0x39,
                0x39, 0x39, 0x39, 0x38, 0x38, 0x38, 0x38, 0x37,
                0x37, 0x37, 0x37, 0x36, 0x36, 0x36, 0x36, 0x35,
                0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x34, 0x34,
                0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32,
                0x32, 0x31, 0x31, 0x31, 0x31, 0x31, 0x30, 0x30,
                0x30, 0x30, 0x30, 0x2f, 0x2f, 0x2f, 0x2f, 0x2f
        };
        int i;

        if (rate == 0)
                return 0;       /* Bail out if no leading "1" */
        rate *= 11185;          /* Scale 48000 to 0x20002380 */
        for (i = 31; i > 0; i--) {
                if (rate & 0x80000000) {        /* Detect leading "1" */
                        return (((unsigned int) (i - 15) << 20) +
                               logMagTable[0x7f & (rate >> 24)] +
                                        (0x7f & (rate >> 17)) *
                                        logSlopeTable[0x7f & (rate >> 24)]);
                }
                rate <<= 1;
        }

        return 0;               /* Should never reach this point */
}


/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading