[funini.com] -> [kei@sodan] -> Kernel Reading

root/include/asm-parisc/floppy.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. floppy_hardint
  2. fd_disable_dma
  3. vdma_request_dma
  4. vdma_nop
  5. vdma_get_dma_residue
  6. fd_request_irq
  7. dma_mem_alloc
  8. vdma_mem_alloc
  9. _fd_dma_mem_free
  10. _fd_chose_dma_mode
  11. vdma_dma_setup
  12. hard_dma_setup

/*    Architecture specific parts of the Floppy driver
 *
 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
 *    Copyright (C) 2000 Matthew Wilcox (willy a debian . org)
 *    Copyright (C) 2000 Dave Kennedy
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef __ASM_PARISC_FLOPPY_H
#define __ASM_PARISC_FLOPPY_H

#include <linux/vmalloc.h>


/*
 * The DMA channel used by the floppy controller cannot access data at
 * addresses >= 16MB
 *
 * Went back to the 1MB limit, as some people had problems with the floppy
 * driver otherwise. It doesn't matter much for performance anyway, as most
 * floppy accesses go through the track buffer.
 */
#define _CROSS_64KB(a,s,vdma) \
(!vdma && ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64))

#define CROSS_64KB(a,s) _CROSS_64KB(a,s,use_virtual_dma & 1)


#define SW fd_routine[use_virtual_dma&1]
#define CSW fd_routine[can_use_virtual_dma & 1]


#define fd_inb(port)                    readb(port)
#define fd_outb(value, port)            writeb(value, port)

#define fd_request_dma()        CSW._request_dma(FLOPPY_DMA,"floppy")
#define fd_free_dma()           CSW._free_dma(FLOPPY_DMA)
#define fd_enable_irq()         enable_irq(FLOPPY_IRQ)
#define fd_disable_irq()        disable_irq(FLOPPY_IRQ)
#define fd_free_irq()           free_irq(FLOPPY_IRQ, NULL)
#define fd_get_dma_residue()    SW._get_dma_residue(FLOPPY_DMA)
#define fd_dma_mem_alloc(size)  SW._dma_mem_alloc(size)
#define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io)

#define FLOPPY_CAN_FALLBACK_ON_NODMA

static int virtual_dma_count=0;
static int virtual_dma_residue=0;
static char *virtual_dma_addr=0;
static int virtual_dma_mode=0;
static int doing_pdma=0;

static void floppy_hardint(int irq, void *dev_id, struct pt_regs * regs)
{
        register unsigned char st;

#undef TRACE_FLPY_INT

#ifdef TRACE_FLPY_INT
        static int calls=0;
        static int bytes=0;
        static int dma_wait=0;
#endif
        if (!doing_pdma) {
                floppy_interrupt(irq, dev_id, regs);
                return;
        }

#ifdef TRACE_FLPY_INT
        if(!calls)
                bytes = virtual_dma_count;
#endif

        {
                register int lcount;
                register char *lptr = virtual_dma_addr;

                for (lcount = virtual_dma_count; lcount; lcount--) {
                        st = fd_inb(virtual_dma_port+4) & 0xa0 ;
                        if (st != 0xa0) 
                                break;
                        if (virtual_dma_mode) {
                                fd_outb(*lptr, virtual_dma_port+5);
                        } else {
                                *lptr = fd_inb(virtual_dma_port+5);
                        }
                        lptr++;
                }
                virtual_dma_count = lcount;
                virtual_dma_addr = lptr;
                st = fd_inb(virtual_dma_port+4);
        }

#ifdef TRACE_FLPY_INT
        calls++;
#endif
        if (st == 0x20)
                return;
        if (!(st & 0x20)) {
                virtual_dma_residue += virtual_dma_count;
                virtual_dma_count = 0;
#ifdef TRACE_FLPY_INT
                printk("count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n", 
                       virtual_dma_count, virtual_dma_residue, calls, bytes,
                       dma_wait);
                calls = 0;
                dma_wait=0;
#endif
                doing_pdma = 0;
                floppy_interrupt(irq, dev_id, regs);
                return;
        }
#ifdef TRACE_FLPY_INT
        if (!virtual_dma_count)
                dma_wait++;
#endif
}

static void fd_disable_dma(void)
{
        if(! (can_use_virtual_dma & 1))
                disable_dma(FLOPPY_DMA);
        doing_pdma = 0;
        virtual_dma_residue += virtual_dma_count;
        virtual_dma_count=0;
}

static int vdma_request_dma(unsigned int dmanr, const char * device_id)
{
        return 0;
}

static void vdma_nop(unsigned int dummy)
{
}


static int vdma_get_dma_residue(unsigned int dummy)
{
        return virtual_dma_count + virtual_dma_residue;
}


static int fd_request_irq(void)
{
        if(can_use_virtual_dma)
                return request_irq(FLOPPY_IRQ, floppy_hardint,
                                   IRQF_DISABLED, "floppy", NULL);
        else
                return request_irq(FLOPPY_IRQ, floppy_interrupt,
                                   IRQF_DISABLED, "floppy", NULL);
}

static unsigned long dma_mem_alloc(unsigned long size)
{
        return __get_dma_pages(GFP_KERNEL, get_order(size));
}


static unsigned long vdma_mem_alloc(unsigned long size)
{
        return (unsigned long) vmalloc(size);

}

#define nodma_mem_alloc(size) vdma_mem_alloc(size)

static void _fd_dma_mem_free(unsigned long addr, unsigned long size)
{
        if((unsigned int) addr >= (unsigned int) high_memory)
                return vfree((void *)addr);
        else
                free_pages(addr, get_order(size));              
}

#define fd_dma_mem_free(addr, size)  _fd_dma_mem_free(addr, size) 

static void _fd_chose_dma_mode(char *addr, unsigned long size)
{
        if(can_use_virtual_dma == 2) {
                if((unsigned int) addr >= (unsigned int) high_memory ||
                   virt_to_bus(addr) >= 0x1000000 ||
                   _CROSS_64KB(addr, size, 0))
                        use_virtual_dma = 1;
                else
                        use_virtual_dma = 0;
        } else {
                use_virtual_dma = can_use_virtual_dma & 1;
        }
}

#define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size)


static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io)
{
        doing_pdma = 1;
        virtual_dma_port = io;
        virtual_dma_mode = (mode  == DMA_MODE_WRITE);
        virtual_dma_addr = addr;
        virtual_dma_count = size;
        virtual_dma_residue = 0;
        return 0;
}

static int hard_dma_setup(char *addr, unsigned long size, int mode, int io)
{
#ifdef FLOPPY_SANITY_CHECK
        if (CROSS_64KB(addr, size)) {
                printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size);
                return -1;
        }
#endif
        /* actual, physical DMA */
        doing_pdma = 0;
        clear_dma_ff(FLOPPY_DMA);
        set_dma_mode(FLOPPY_DMA,mode);
        set_dma_addr(FLOPPY_DMA,virt_to_bus(addr));
        set_dma_count(FLOPPY_DMA,size);
        enable_dma(FLOPPY_DMA);
        return 0;
}

static struct fd_routine_l {
        int (*_request_dma)(unsigned int dmanr, const char * device_id);
        void (*_free_dma)(unsigned int dmanr);
        int (*_get_dma_residue)(unsigned int dummy);
        unsigned long (*_dma_mem_alloc) (unsigned long size);
        int (*_dma_setup)(char *addr, unsigned long size, int mode, int io);
} fd_routine[] = {
        {
                request_dma,
                free_dma,
                get_dma_residue,
                dma_mem_alloc,
                hard_dma_setup
        },
        {
                vdma_request_dma,
                vdma_nop,
                vdma_get_dma_residue,
                vdma_mem_alloc,
                vdma_dma_setup
        }
};


static int FDC1 = 0x3f0; /* Lies.  Floppy controller is memory mapped, not io mapped */
static int FDC2 = -1;

#define FLOPPY0_TYPE    0
#define FLOPPY1_TYPE    0

#define N_FDC 1
#define N_DRIVE 8

#define EXTRA_FLOPPY_PARAMS

#endif /* __ASM_PARISC_FLOPPY_H */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading