[funini.com] -> [kei@sodan] -> Kernel Reading

root/include/math-emu/op-1.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


/* Software floating-point emulation.
   Basic one-word fraction declaration and manipulation.
   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Richard Henderson (rth@cygnus.com),
                  Jakub Jelinek (jj@ultra.linux.cz),
                  David S. Miller (davem@redhat.com) and
                  Peter Maydell (pmaydell@chiark.greenend.org.uk).

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public
   License along with the GNU C Library; see the file COPYING.LIB.  If
   not, write to the Free Software Foundation, Inc.,
   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#ifndef    __MATH_EMU_OP_1_H__
#define    __MATH_EMU_OP_1_H__

#define _FP_FRAC_DECL_1(X)      _FP_W_TYPE X##_f=0
#define _FP_FRAC_COPY_1(D,S)    (D##_f = S##_f)
#define _FP_FRAC_SET_1(X,I)     (X##_f = I)
#define _FP_FRAC_HIGH_1(X)      (X##_f)
#define _FP_FRAC_LOW_1(X)       (X##_f)
#define _FP_FRAC_WORD_1(X,w)    (X##_f)

#define _FP_FRAC_ADDI_1(X,I)    (X##_f += I)
#define _FP_FRAC_SLL_1(X,N)                     \
  do {                                          \
    if (__builtin_constant_p(N) && (N) == 1)    \
      X##_f += X##_f;                           \
    else                                        \
      X##_f <<= (N);                            \
  } while (0)
#define _FP_FRAC_SRL_1(X,N)     (X##_f >>= N)

/* Right shift with sticky-lsb.  */
#define _FP_FRAC_SRS_1(X,N,sz)  __FP_FRAC_SRS_1(X##_f, N, sz)

#define __FP_FRAC_SRS_1(X,N,sz)                                         \
   (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1                \
                     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))

#define _FP_FRAC_ADD_1(R,X,Y)   (R##_f = X##_f + Y##_f)
#define _FP_FRAC_SUB_1(R,X,Y)   (R##_f = X##_f - Y##_f)
#define _FP_FRAC_DEC_1(X,Y)     (X##_f -= Y##_f)
#define _FP_FRAC_CLZ_1(z, X)    __FP_CLZ(z, X##_f)

/* Predicates */
#define _FP_FRAC_NEGP_1(X)      ((_FP_WS_TYPE)X##_f < 0)
#define _FP_FRAC_ZEROP_1(X)     (X##_f == 0)
#define _FP_FRAC_OVERP_1(fs,X)  (X##_f & _FP_OVERFLOW_##fs)
#define _FP_FRAC_CLEAR_OVERP_1(fs,X)    (X##_f &= ~_FP_OVERFLOW_##fs)
#define _FP_FRAC_EQ_1(X, Y)     (X##_f == Y##_f)
#define _FP_FRAC_GE_1(X, Y)     (X##_f >= Y##_f)
#define _FP_FRAC_GT_1(X, Y)     (X##_f > Y##_f)

#define _FP_ZEROFRAC_1          0
#define _FP_MINFRAC_1           1
#define _FP_MAXFRAC_1           (~(_FP_WS_TYPE)0)

/*
 * Unpack the raw bits of a native fp value.  Do not classify or
 * normalize the data.
 */

#define _FP_UNPACK_RAW_1(fs, X, val)                            \
  do {                                                          \
    union _FP_UNION_##fs _flo; _flo.flt = (val);                \
                                                                \
    X##_f = _flo.bits.frac;                                     \
    X##_e = _flo.bits.exp;                                      \
    X##_s = _flo.bits.sign;                                     \
  } while (0)

#define _FP_UNPACK_RAW_1_P(fs, X, val)                          \
  do {                                                          \
    union _FP_UNION_##fs *_flo =                                \
      (union _FP_UNION_##fs *)(val);                            \
                                                                \
    X##_f = _flo->bits.frac;                                    \
    X##_e = _flo->bits.exp;                                     \
    X##_s = _flo->bits.sign;                                    \
  } while (0)

/*
 * Repack the raw bits of a native fp value.
 */

#define _FP_PACK_RAW_1(fs, val, X)                              \
  do {                                                          \
    union _FP_UNION_##fs _flo;                                  \
                                                                \
    _flo.bits.frac = X##_f;                                     \
    _flo.bits.exp  = X##_e;                                     \
    _flo.bits.sign = X##_s;                                     \
                                                                \
    (val) = _flo.flt;                                           \
  } while (0)

#define _FP_PACK_RAW_1_P(fs, val, X)                            \
  do {                                                          \
    union _FP_UNION_##fs *_flo =                                \
      (union _FP_UNION_##fs *)(val);                            \
                                                                \
    _flo->bits.frac = X##_f;                                    \
    _flo->bits.exp  = X##_e;                                    \
    _flo->bits.sign = X##_s;                                    \
  } while (0)


/*
 * Multiplication algorithms:
 */

/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
   multiplication immediately.  */

#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)                          \
  do {                                                                  \
    R##_f = X##_f * Y##_f;                                              \
    /* Normalize since we know where the msb of the multiplicands       \
       were (bit B), we know that the msb of the of the product is      \
       at either 2B or 2B-1.  */                                        \
    _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);                        \
  } while (0)

/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */

#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)                   \
  do {                                                                  \
    _FP_W_TYPE _Z_f0, _Z_f1;                                            \
    doit(_Z_f1, _Z_f0, X##_f, Y##_f);                                   \
    /* Normalize since we know where the msb of the multiplicands       \
       were (bit B), we know that the msb of the of the product is      \
       at either 2B or 2B-1.  */                                        \
    _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);                       \
    R##_f = _Z_f0;                                                      \
  } while (0)

/* Finally, a simple widening multiply algorithm.  What fun!  */

#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)                         \
  do {                                                                  \
    _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;          \
                                                                        \
    /* split the words in half */                                       \
    _xh = X##_f >> (_FP_W_TYPE_SIZE/2);                                 \
    _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);         \
    _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);                                 \
    _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);         \
                                                                        \
    /* multiply the pieces */                                           \
    _z_f0 = _xl * _yl;                                                  \
    _a_f0 = _xh * _yl;                                                  \
    _a_f1 = _xl * _yh;                                                  \
    _z_f1 = _xh * _yh;                                                  \
                                                                        \
    /* reassemble into two full words */                                \
    if ((_a_f0 += _a_f1) < _a_f1)                                       \
      _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);                    \
    _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);                               \
    _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);                               \
    _FP_FRAC_ADD_2(_z, _z, _a);                                         \
                                                                        \
    /* normalize */                                                     \
    _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);                     \
    R##_f = _z_f0;                                                      \
  } while (0)


/*
 * Division algorithms:
 */

/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
   division immediately.  Give this macro either _FP_DIV_HELP_imm for
   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
   choose will depend on what the compiler does with divrem4.  */

#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)           \
  do {                                                  \
    _FP_W_TYPE _q, _r;                                  \
    X##_f <<= (X##_f < Y##_f                            \
               ? R##_e--, _FP_WFRACBITS_##fs            \
               : _FP_WFRACBITS_##fs - 1);               \
    doit(_q, _r, X##_f, Y##_f);                         \
    R##_f = _q | (_r != 0);                             \
  } while (0)

/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
   that may be useful in this situation.  This first is for a primitive
   that requires normalization, the second for one that does not.  Look
   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */

#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)                           \
  do {                                                                  \
    _FP_W_TYPE _nh, _nl, _q, _r, _y;                                    \
                                                                        \
    /* Normalize Y -- i.e. make the most significant bit set.  */       \
    _y = Y##_f << _FP_WFRACXBITS_##fs;                                  \
                                                                        \
    /* Shift X op correspondingly high, that is, up one full word.  */  \
    if (X##_f < Y##_f)                                                  \
      {                                                                 \
        R##_e--;                                                        \
        _nl = 0;                                                        \
        _nh = X##_f;                                                    \
      }                                                                 \
    else                                                                \
      {                                                                 \
        _nl = X##_f << (_FP_W_TYPE_SIZE - 1);                           \
        _nh = X##_f >> 1;                                               \
      }                                                                 \
                                                                        \
    udiv_qrnnd(_q, _r, _nh, _nl, _y);                                   \
    R##_f = _q | (_r != 0);                                             \
  } while (0)

#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)                \
  do {                                                  \
    _FP_W_TYPE _nh, _nl, _q, _r;                        \
    if (X##_f < Y##_f)                                  \
      {                                                 \
        R##_e--;                                        \
        _nl = X##_f << _FP_WFRACBITS_##fs;              \
        _nh = X##_f >> _FP_WFRACXBITS_##fs;             \
      }                                                 \
    else                                                \
      {                                                 \
        _nl = X##_f << (_FP_WFRACBITS_##fs - 1);        \
        _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);       \
      }                                                 \
    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);                \
    R##_f = _q | (_r != 0);                             \
  } while (0)
  
  
/*
 * Square root algorithms:
 * We have just one right now, maybe Newton approximation
 * should be added for those machines where division is fast.
 */
 
#define _FP_SQRT_MEAT_1(R, S, T, X, q)                  \
  do {                                                  \
    while (q != _FP_WORK_ROUND)                         \
      {                                                 \
        T##_f = S##_f + q;                              \
        if (T##_f <= X##_f)                             \
          {                                             \
            S##_f = T##_f + q;                          \
            X##_f -= T##_f;                             \
            R##_f += q;                                 \
          }                                             \
        _FP_FRAC_SLL_1(X, 1);                           \
        q >>= 1;                                        \
      }                                                 \
    if (X##_f)                                          \
      {                                                 \
        if (S##_f < X##_f)                              \
          R##_f |= _FP_WORK_ROUND;                      \
        R##_f |= _FP_WORK_STICKY;                       \
      }                                                 \
  } while (0)

/*
 * Assembly/disassembly for converting to/from integral types.  
 * No shifting or overflow handled here.
 */

#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)        (r = X##_f)
#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)     (X##_f = r)


/*
 * Convert FP values between word sizes
 */

#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)                               \
  do {                                                                  \
    D##_f = S##_f;                                                      \
    if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)                      \
      {                                                                 \
        if (S##_c != FP_CLS_NAN)                                        \
          _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),  \
                         _FP_WFRACBITS_##sfs);                          \
        else                                                            \
          _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \
      }                                                                 \
    else                                                                \
      D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;              \
  } while (0)

#endif /* __MATH_EMU_OP_1_H__ */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading