[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kernel/tlb_32.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. leave_mm
  2. smp_invalidate_interrupt
  3. native_flush_tlb_others
  4. flush_tlb_current_task
  5. flush_tlb_mm
  6. flush_tlb_page
  7. do_flush_tlb_all
  8. flush_tlb_all
  9. reset_lazy_tlbstate

#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>

#include <asm/tlbflush.h>

DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate)
                        ____cacheline_aligned = { &init_mm, 0, };

/* must come after the send_IPI functions above for inlining */
#include <mach_ipi.h>

/*
 *      Smarter SMP flushing macros.
 *              c/o Linus Torvalds.
 *
 *      These mean you can really definitely utterly forget about
 *      writing to user space from interrupts. (Its not allowed anyway).
 *
 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
 */

static cpumask_t flush_cpumask;
static struct mm_struct *flush_mm;
static unsigned long flush_va;
static DEFINE_SPINLOCK(tlbstate_lock);

/*
 * We cannot call mmdrop() because we are in interrupt context,
 * instead update mm->cpu_vm_mask.
 *
 * We need to reload %cr3 since the page tables may be going
 * away from under us..
 */
void leave_mm(int cpu)
{
        if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
                BUG();
        cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
        load_cr3(swapper_pg_dir);
}
EXPORT_SYMBOL_GPL(leave_mm);

/*
 *
 * The flush IPI assumes that a thread switch happens in this order:
 * [cpu0: the cpu that switches]
 * 1) switch_mm() either 1a) or 1b)
 * 1a) thread switch to a different mm
 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
 *      Stop ipi delivery for the old mm. This is not synchronized with
 *      the other cpus, but smp_invalidate_interrupt ignore flush ipis
 *      for the wrong mm, and in the worst case we perform a superfluous
 *      tlb flush.
 * 1a2) set cpu_tlbstate to TLBSTATE_OK
 *      Now the smp_invalidate_interrupt won't call leave_mm if cpu0
 *      was in lazy tlb mode.
 * 1a3) update cpu_tlbstate[].active_mm
 *      Now cpu0 accepts tlb flushes for the new mm.
 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
 *      Now the other cpus will send tlb flush ipis.
 * 1a4) change cr3.
 * 1b) thread switch without mm change
 *      cpu_tlbstate[].active_mm is correct, cpu0 already handles
 *      flush ipis.
 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 *      Atomically set the bit [other cpus will start sending flush ipis],
 *      and test the bit.
 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 * 2) switch %%esp, ie current
 *
 * The interrupt must handle 2 special cases:
 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 *   runs in kernel space, the cpu could load tlb entries for user space
 *   pages.
 *
 * The good news is that cpu_tlbstate is local to each cpu, no
 * write/read ordering problems.
 */

/*
 * TLB flush IPI:
 *
 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 * 2) Leave the mm if we are in the lazy tlb mode.
 */

void smp_invalidate_interrupt(struct pt_regs *regs)
{
        unsigned long cpu;

        cpu = get_cpu();

        if (!cpu_isset(cpu, flush_cpumask))
                goto out;
                /*
                 * This was a BUG() but until someone can quote me the
                 * line from the intel manual that guarantees an IPI to
                 * multiple CPUs is retried _only_ on the erroring CPUs
                 * its staying as a return
                 *
                 * BUG();
                 */

        if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
                if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
                        if (flush_va == TLB_FLUSH_ALL)
                                local_flush_tlb();
                        else
                                __flush_tlb_one(flush_va);
                } else
                        leave_mm(cpu);
        }
        ack_APIC_irq();
        smp_mb__before_clear_bit();
        cpu_clear(cpu, flush_cpumask);
        smp_mb__after_clear_bit();
out:
        put_cpu_no_resched();
        __get_cpu_var(irq_stat).irq_tlb_count++;
}

void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
                             unsigned long va)
{
        cpumask_t cpumask = *cpumaskp;

        /*
         * A couple of (to be removed) sanity checks:
         *
         * - current CPU must not be in mask
         * - mask must exist :)
         */
        BUG_ON(cpus_empty(cpumask));
        BUG_ON(cpu_isset(smp_processor_id(), cpumask));
        BUG_ON(!mm);

#ifdef CONFIG_HOTPLUG_CPU
        /* If a CPU which we ran on has gone down, OK. */
        cpus_and(cpumask, cpumask, cpu_online_map);
        if (unlikely(cpus_empty(cpumask)))
                return;
#endif

        /*
         * i'm not happy about this global shared spinlock in the
         * MM hot path, but we'll see how contended it is.
         * AK: x86-64 has a faster method that could be ported.
         */
        spin_lock(&tlbstate_lock);

        flush_mm = mm;
        flush_va = va;
        cpus_or(flush_cpumask, cpumask, flush_cpumask);
        /*
         * We have to send the IPI only to
         * CPUs affected.
         */
        send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);

        while (!cpus_empty(flush_cpumask))
                /* nothing. lockup detection does not belong here */
                cpu_relax();

        flush_mm = NULL;
        flush_va = 0;
        spin_unlock(&tlbstate_lock);
}

void flush_tlb_current_task(void)
{
        struct mm_struct *mm = current->mm;
        cpumask_t cpu_mask;

        preempt_disable();
        cpu_mask = mm->cpu_vm_mask;
        cpu_clear(smp_processor_id(), cpu_mask);

        local_flush_tlb();
        if (!cpus_empty(cpu_mask))
                flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
        preempt_enable();
}

void flush_tlb_mm(struct mm_struct *mm)
{
        cpumask_t cpu_mask;

        preempt_disable();
        cpu_mask = mm->cpu_vm_mask;
        cpu_clear(smp_processor_id(), cpu_mask);

        if (current->active_mm == mm) {
                if (current->mm)
                        local_flush_tlb();
                else
                        leave_mm(smp_processor_id());
        }
        if (!cpus_empty(cpu_mask))
                flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);

        preempt_enable();
}

void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
{
        struct mm_struct *mm = vma->vm_mm;
        cpumask_t cpu_mask;

        preempt_disable();
        cpu_mask = mm->cpu_vm_mask;
        cpu_clear(smp_processor_id(), cpu_mask);

        if (current->active_mm == mm) {
                if (current->mm)
                        __flush_tlb_one(va);
                 else
                        leave_mm(smp_processor_id());
        }

        if (!cpus_empty(cpu_mask))
                flush_tlb_others(cpu_mask, mm, va);

        preempt_enable();
}
EXPORT_SYMBOL(flush_tlb_page);

static void do_flush_tlb_all(void *info)
{
        unsigned long cpu = smp_processor_id();

        __flush_tlb_all();
        if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
                leave_mm(cpu);
}

void flush_tlb_all(void)
{
        on_each_cpu(do_flush_tlb_all, NULL, 1);
}

void reset_lazy_tlbstate(void)
{
        int cpu = raw_smp_processor_id();

        per_cpu(cpu_tlbstate, cpu).state = 0;
        per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
}


/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading