
A Survey of

Distributed Task Schedulers
Kei Takahashi (M1)

2

What do you want to do on a grid?

Vast computing resources

Calculation power

Memory

Data storage

Large scale computation

Numerical simulations

Statistical analyses

Data mining

.. for everyone

3

Grid Applications

For some applications, it is inevitable to

develop parallel algorithms

Dedicated to parallel environment

E.g. matrix computations

However, many applications are

efficiently sped up by simply running

multiple serial programs in parallel

E.g. many data intensive applications

4

Grid Schedulers

A system which distributes many serial tasks
onto the grid environment
Task assignments

File transfers

A user need not rewrite serial programs to
execute them in parallel

Some constraints need to be considered
Machine availability

Machine spec (CPU/Memory/HDD), load

Data location

Task priority

5

An Example of Scheduling

Each task is assigned to a machine

A

(fast)

B

(slow)

Scheduler Task t0

Heavy

Task t1

Light

Task t2

Light

t0

t1

t2A

B t0

t2A

B

t1

Shorter processing time

6

Efficient Scheduling

Task scheduling in heterogeneous

environment is not a new problem.

Some heuristics are already proposed.

However, existing algorithms could not

appropriately handle some situations

Data intensive applications

Workflows

7

Data Intensive Applications

A computation using large data

Some gigabytes to petabytes

A scheduler need to consider the

followings:

File transfer need to be diminished

Data replica should be effectively placed

Unused intermediate files should be

cleared

8

An Example of Scheduling

Each task is assigned to a machine

A

(fast)

B

(slow)

Scheduler Task t0

Heavy

Requires : f0

Task t1

Light

Requires : f1

Task t2

Light

Requires : f1

File f0

Large

File f1

Small

t0

t1

t2A

B

f0 f1

t0

t2A

B

t1
f1

Shorter processing time

9

Workflow

A set of tasks with dependencies

Data dependency between some tasks

Expressed by a DAG

Corpus
Phrases

(by words)

Corpus

Corpus

Parsed

Corpus

Parsed

Corpus

Parsed

Corpus

Phrases

(by words)

Phrases

(by words)

Cooccurrence

analysis

Cooccurrence

analysis

Coocurrence

analysis

10

Workflow (cont.)

Workflow is suitable for expressing some grid

applications

Only necessary dependency is described by a

workflow

A scheduler can adaptively map tasks to the real

node environment

More factors to consider

Some tasks are important to shorten the overall

makespan

11

Agenda

Introduction

Basic Scheduling Algorithms

Some heuristics

Data-intensive/Workflow Schedulers

Conclusion

12

Basic Scheduling Heuristics

Given information :

ETC (expected completion time) for each

pair of a node and a task, including data

transfer cost

No congestion is assumed

Aim : minimizing the makespan
(Total processing time)

[1] Tracy et al. A Comparison Study of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems (TR-ECE 00-04)

13

An example of ETC

ETC of (task, node)

= (node available time)

+ (data transfer time)

+ (task process time)

Available after Transfer Process ETC

Node A 200 (sec) 10 (sec) 100 (sec) 310 (sec)

Node B 0 (sec) 0 (sec) 100 (sec) 100 (sec)

Node C 0 (sec) 100 (sec) 20 (sec) 120 (sec)

A B

Data

1GB

C1Gbps 100Mbps

14

Scheduling algorithms

An ETC matrix is given
When a task is assigned to a node, the ETC matrix is updated

An ETC matrix is consistent
{ if node M0 can process a task faster than M1, M0
can process every other task faster than M }
The makespan of an inconsistent ETC matrix differs more

than that of a consistent ETC matrix

Task 0 Task 1 Task 2

Node A 8 6 2

Node B 1 9 3

Node C 5 8 4

14 10

Assigned to A

15

Greedy approaches

Principles

Assign a task to the best node at a time

Need to decide the order of tasks

Scheduling priority

Min-min : Light task

Max-min : Heavy task

Sufferage : A task whose completion time

differs most depending on the node

16

Max-min / Min-min

Calculate completion times for each task and node

For each task take the minimum completion time

Take one from unscheduled tasks
Min-min : Choose a task which has “max” value

Max-min : Choose a task which has “max” value

Schedule the task to the best node

Task 0 Task 1 Task 2

node A 8 6 2

node B 1 9 3

node C 5 8 4

Min-min

Max-min

17

Sufferage

For each task, calculate Sufferage

(The difference between the minimum and

second minimum completion times)

Take a task which has maximum Sufferage

Schedule the task to the best node

Task 0 Task 1 Task 2

Node A 8 6 2

Node B 1 9 3

Node C 5 8 4

Sufferage = 4 Sufferage = 2

Sufferage = 1

18

Comparing Scheduling Heuristics

A simulation was done to compare some scheduling
tactics [1]

Greedy (Max-min / Min-min)

GA, Simulated annealing, A*, etc.

ETC matrices were randomly generated
512 tasks, 8 nodes

Consistent, inconsistent

GA performed the shortest makespan in most cases,
however the calculation cost was not negligible

Min-min heuristics performed well
(at most 10% worse than the best)

[1] Tracy et al. A Comparison Study of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems (TR-ECE 00-04)

19

(Agenda)

Introduction

Scheduling Algorithms

Data-intensive/Workflow Schedulers

GrADS

Phan’s approach

Conclusion

20

Scheduling Workflows

Additional Conditions to be considered

Task dependency

Every required file need to be transferred to the

node before the task starts

“Non-executable” schedule exists

Data are dynamically generated

The file location is not known in advance

Intermediate files are not needed at last

21

GrADS [1]

Execution time estimation

Profile the application behavior
CPU/memory usage

Data transfer cost

Greedy scheduling heuristics

Create ETC matrix for assignable tasks

After assigning a task, some tasks turn to
“assignable”

Choose the best schedule from Max-min,
min-min and Sufferage

[1] Mandal. et al. "Scheduling Strategies for Mapping Application Workflows onto the Grid“

in IEEEInternational Symposium on High Performance Distributed Computing (HPDC 2005)

22

GrADS (cont.)

An experiment was done on real tasks

The original data (2GB) was replicated to

every cluster in advance

File transfer occurs in clusters

Comparing to random scheduler, it

achieved 1.5 to 2.2 times better

makespan

23

Scheduling Data-intensive Applications [1]

Co-scheduling tasks and data replication

Using GA

A gene contains the followings:

Task order in the global schedule

Assignment of tasks to nodes

Assignment of replicas to nodes

Only part of the tasks are scheduled at a time

Otherwise GA takes too long time

[1] Phan et al. “Evolving toward the perfect schedule: Co-scheduling task

assignments and data replication in wide-area systems using a genetic algorithm.”

In Proceedings of the11th Workshop on task Scheduling Strategies for Parallel

Processing. Cambridge, MA. Springer-Verlag, Berlin, Germany.

24

(cont.)

An example of the gene

One schedule is expressed in the gene

t0 t1 t4 t3 t2

t0:n0 t1:n1 t2:n0 t3:n1 t4:n0

d0:n0 d1:n1 d2:n0

t0

t1

t2

t3

t4

Replicas

Task assignment

Task order

t0n0

n1

t4

t1

t2

t3

25

(cont.)

A simulation was performed

Compared to min-min heuristics with randomly

distributed replicas

Number of GA generations are fixed (100)

When 40 tasks are scheduled at a time, GA

performs twice better makespan

However, the difference decreases when more

tasks are scheduled at a time

GA has not reached

the best solution

40 160

M
a
k
e
s
p
a
n

80

26

Conclusion

Some scheduling heuristics were

introduced

Greedy (Min-min, Max-min, Sufferage)

GrADS can schedule workflows by

predicting node performance and using

greedy heuristics

A research was done to use GA and co-

schedule tasks and data replication

27

Future Work

Most of the research is still on simulation

Hard to predict program/network behavior

A scheduler will be implemented

Using network topology information

Managing Intermediate files

Easy to install and execute

