
A Survey of

Distributed Task Schedulers
Kei Takahashi (M1)

2

What do you want to do on a grid?

Vast computing resources

Calculation power

Memory

Data storage

Large scale computation

Numerical simulations

Statistical analyses

Data mining

.. for everyone

3

Grid Applications

For some applications, it is inevitable to

develop parallel algorithms

Dedicated to parallel environment

E.g. matrix computations

However, many applications are

efficiently sped up by simply running

multiple serial programs in parallel

E.g. many data intensive applications

4

Grid Schedulers

A system which distributes many serial tasks
onto the grid environment
Task assignments

File transfers

A user need not rewrite serial programs to
execute them in parallel

Some constraints need to be considered
Machine availability

Machine spec (CPU/Memory/HDD), load

Data location

Task priority

5

An Example of Scheduling

Each task is assigned to a machine

A

(fast)

B

(slow)

Scheduler Task t0

Heavy

Task t1

Light

Task t2

Light

t0

t1

t2A

B t0

t2A

B

t1

Shorter processing time

6

Efficient Scheduling

Task scheduling in heterogeneous

environment is not a new problem.

Some heuristics are already proposed.

However, existing algorithms could not

appropriately handle some situations

Data intensive applications

Workflows

7

Data Intensive Applications

A computation using large data

Some gigabytes to petabytes

A scheduler need to consider the

followings:

File transfer need to be diminished

Data replica should be effectively placed

Unused intermediate files should be

cleared

8

An Example of Scheduling

Each task is assigned to a machine

A

(fast)

B

(slow)

Scheduler Task t0

Heavy

Requires : f0

Task t1

Light

Requires : f1

Task t2

Light

Requires : f1

File f0

Large

File f1

Small

t0

t1

t2A

B

f0 f1

t0

t2A

B

t1
f1

Shorter processing time

9

Workflow

A set of tasks with dependencies

Data dependency between some tasks

Expressed by a DAG

Corpus
Phrases

(by words)

Corpus

Corpus

Parsed

Corpus

Parsed

Corpus

Parsed

Corpus

Phrases

(by words)

Phrases

(by words)

Cooccurrence

analysis

Cooccurrence

analysis

Coocurrence

analysis

10

Workflow (cont.)

Workflow is suitable for expressing some grid

applications

Only necessary dependency is described by a

workflow

A scheduler can adaptively map tasks to the real

node environment

More factors to consider

Some tasks are important to shorten the overall

makespan

11

Agenda

Introduction

Basic Scheduling Algorithms

Some heuristics

Data-intensive/Workflow Schedulers

Conclusion

12

Basic Scheduling Heuristics

Given information :

ETC (expected completion time) for each

pair of a node and a task, including data

transfer cost

No congestion is assumed

Aim : minimizing the makespan
(Total processing time)

[1] Tracy et al. A Comparison Study of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems (TR-ECE 00-04)

13

An example of ETC

ETC of (task, node)

= (node available time)

+ (data transfer time)

+ (task process time)

Available after Transfer Process ETC

Node A 200 (sec) 10 (sec) 100 (sec) 310 (sec)

Node B 0 (sec) 0 (sec) 100 (sec) 100 (sec)

Node C 0 (sec) 100 (sec) 20 (sec) 120 (sec)

A B

Data

1GB

C1Gbps 100Mbps

14

Scheduling algorithms

An ETC matrix is given
When a task is assigned to a node, the ETC matrix is updated

An ETC matrix is consistent
{ if node M0 can process a task faster than M1, M0
can process every other task faster than M }
The makespan of an inconsistent ETC matrix differs more

than that of a consistent ETC matrix

Task 0 Task 1 Task 2

Node A 8 6 2

Node B 1 9 3

Node C 5 8 4

14 10

Assigned to A

15

Greedy approaches

Principles

Assign a task to the best node at a time

Need to decide the order of tasks

Scheduling priority

Min-min : Light task

Max-min : Heavy task

Sufferage : A task whose completion time

differs most depending on the node

16

Max-min / Min-min

Calculate completion times for each task and node

For each task take the minimum completion time

Take one from unscheduled tasks
Min-min : Choose a task which has “max” value

Max-min : Choose a task which has “max” value

Schedule the task to the best node

Task 0 Task 1 Task 2

node A 8 6 2

node B 1 9 3

node C 5 8 4

Min-min

Max-min

17

Sufferage

For each task, calculate Sufferage

(The difference between the minimum and

second minimum completion times)

Take a task which has maximum Sufferage

Schedule the task to the best node

Task 0 Task 1 Task 2

Node A 8 6 2

Node B 1 9 3

Node C 5 8 4

Sufferage = 4 Sufferage = 2

Sufferage = 1

18

Comparing Scheduling Heuristics

A simulation was done to compare some scheduling
tactics [1]

Greedy (Max-min / Min-min)

GA, Simulated annealing, A*, etc.

ETC matrices were randomly generated
512 tasks, 8 nodes

Consistent, inconsistent

GA performed the shortest makespan in most cases,
however the calculation cost was not negligible

Min-min heuristics performed well
(at most 10% worse than the best)

[1] Tracy et al. A Comparison Study of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems (TR-ECE 00-04)

19

(Agenda)

Introduction

Scheduling Algorithms

Data-intensive/Workflow Schedulers

GrADS

Phan’s approach

Conclusion

20

Scheduling Workflows

Additional Conditions to be considered

Task dependency

Every required file need to be transferred to the

node before the task starts

“Non-executable” schedule exists

Data are dynamically generated

The file location is not known in advance

Intermediate files are not needed at last

21

GrADS [1]

Execution time estimation

Profile the application behavior
CPU/memory usage

Data transfer cost

Greedy scheduling heuristics

Create ETC matrix for assignable tasks

After assigning a task, some tasks turn to
“assignable”

Choose the best schedule from Max-min,
min-min and Sufferage

[1] Mandal. et al. "Scheduling Strategies for Mapping Application Workflows onto the Grid“

in IEEEInternational Symposium on High Performance Distributed Computing (HPDC 2005)

22

GrADS (cont.)

An experiment was done on real tasks

The original data (2GB) was replicated to

every cluster in advance

File transfer occurs in clusters

Comparing to random scheduler, it

achieved 1.5 to 2.2 times better

makespan

23

Scheduling Data-intensive Applications [1]

Co-scheduling tasks and data replication

Using GA

A gene contains the followings:

Task order in the global schedule

Assignment of tasks to nodes

Assignment of replicas to nodes

Only part of the tasks are scheduled at a time

Otherwise GA takes too long time

[1] Phan et al. “Evolving toward the perfect schedule: Co-scheduling task

assignments and data replication in wide-area systems using a genetic algorithm.”

In Proceedings of the11th Workshop on task Scheduling Strategies for Parallel

Processing. Cambridge, MA. Springer-Verlag, Berlin, Germany.

24

(cont.)

An example of the gene

One schedule is expressed in the gene

t0 t1 t4 t3 t2

t0:n0 t1:n1 t2:n0 t3:n1 t4:n0

d0:n0 d1:n1 d2:n0

t0

t1

t2

t3

t4

Replicas

Task assignment

Task order

t0n0

n1

t4

t1

t2

t3

25

(cont.)

A simulation was performed

Compared to min-min heuristics with randomly

distributed replicas

Number of GA generations are fixed (100)

When 40 tasks are scheduled at a time, GA

performs twice better makespan

However, the difference decreases when more

tasks are scheduled at a time

GA has not reached

the best solution

40 160

M
a
k
e
s
p
a
n

80

26

Conclusion

Some scheduling heuristics were

introduced

Greedy (Min-min, Max-min, Sufferage)

GrADS can schedule workflows by

predicting node performance and using

greedy heuristics

A research was done to use GA and co-

schedule tasks and data replication

27

Future Work

Most of the research is still on simulation

Hard to predict program/network behavior

A scheduler will be implemented

Using network topology information

Managing Intermediate files

Easy to install and execute

