A distributed Task Scheduler

Optimizing Data Transfer Time
(GF—IEERBRERELT IARIRIRTS15—)

Taura lab.
Kei Takahashi (56428)

Task Schedulers

m A system which distributes many serial
tasks onto available nodes

» Task assignments
» Data transfers

m Users can easily execute many serial tasks
In parallel on distributed environment

Scheduler | Task) Task] Task [Task | 7ocx [

= 2 &

File
— —_—

ey 2

|——

Data Intensive Applications

m A computation using a large amount of data
» Natural language processing, data mining, etc.

m Data transfer time takes considerable part of
the total processing time

» Example: parsing a set of data collected by
crawlers located in some hosts
« Typical network bandwidth: 1Gbps~50Mbps
* Throughput of Chasen parser: 1.7MB/s = 14Mbps
* In the worst case, the transfer takes 20% of the

total processing time

——]
Transfer Time

Considering Transfer Cost

m GrADSU! considers transfer time when
scheduling tasks
» Measure bandwidth between any two hosts
» Estimate transfer time by using the bandwidth
» Assign task based on the time

m Since they only use static bandwidth values,
their prediction can be far from the real
network behavior when multiple data
transfer share a link

[1] Mandal. et al. "Scheduling Strategies for Mapping Application Workflows onto the Grid®
in IEEEInternational Symposium on High Performance Distributed Computing (HPDC 2005)

©

Using Replicas

m Machida et. allll have developed a scheduler
which utilizes multiple replicas

» \When data are copied from the source to another
node, the copied node is registered as a replica

» When another node requires the same data, the data
IS copied from the nearest replicas
m In this work, a task schedule itself is not optimized.
Also, It does not care about the effect caused by
of link sharing of multiple transfers

=10~ @ :C
N O @0

[1ETEES FEE—H PEHFE WER LIVHEBIRTLEFALLT 8407007
TV r—2avRAlF R 22— Y RT LM (HPCS2006)

Effects of Link Sharing

m |f several transfers share a link, the sum of their

throughputs cannot exceed the link bandwidth
» throughput(Filel) + throughput (File2)
<= (Link bandwidth)

m Bandwidth between two hosts varies when
multiple data are transferred
» The value is reduced in 25% If 4 transfers share a link

Considering Topology

"he throughput is limited by the narrowest link In
the transfer

"he throughput may become larger by altering
source of transfers or changing task assignment

Throughputs of the two

transfers are limited on this link
File1 can be

transferred from
the other sourc

B (el

Research Purpose

m Design and implement an efficient
distributed task scheduler for data intensive
applications

» Minimize data transfer time by using network
topology and bandwidth information
» Create a schedule which needs less transfers

« Plan multicasts for data transfers
« Maximize throughput by using linear programming

Agenda

m Our Approach
» Task Scheduling Algorithm
» Transfer Planning Algorithm

m Conclusion

Input and Output

®m [nput:
» Data locations
» Network topology and bandwidth
» Task information (required data)

m Qutput:

» Task Scheduling:
Assignment of nodes to tasks

» Transfer Scheduling:
From/to which host data are transferred
Limit bandwidth during the transfer if needed

m Final goal: Minimizing the total completion time

Immediate Goal

m Final goal: Minimizing the total completion time
m Qur idea Is to minimize data transfer time

m Immediate goal: Maximizing the total of data
arrival throughput on each node

S (Y bandwidth(filg ,))

iefor _every node jefor every file

(file; ;: the jth file required by task;)

Maximize the total.of these throughputs

N L L5

The Whole Algorithm

Some nodes are unscheduled |

v

Assign tasks to nodes
Create Initial Task Schedule

(A) Task
Scheduling

Algorithm
Plan Efficient Transfers

Plan Multicast
Optimize Throughput
Re-plan Multicast
Improve the Schedule

\/

Transfer Files
Execute Tasks

y

Task Scheduling Algorithm

Some nodes are unscheduled |

v

Assign tasks to nodes

- (A) Task
e e

Plan Efficient Transfers

Algorithm

Plan Multicast
Optimize Throughput
Re-plan Multicast
Improve the Schedule

\/

Transfer Files
Execute Tasks

J

Task Scheduling Algorithm

m \When some nodes are unscheduled,
» Create candidate task schedules

» Plan efficient file transfers
 From which node file is transfered
 Bandwidth of each file transfer

» Search for the best schedule which maximizes
data transfer throughput
(by using heuristics like GA, SA)
m Decide the task schedule, and start file
transfers and task executions

Transfer Planning Algorithm

Some nodes are unscheduled |

\/

Assign tasks to nodes \

Create Initial Task Schedule

(B) Plan Efficient Transfers

Transfer .Plén Multicast
Planning Optimize Throughput

- Re-plan Multicast
Algorlthm e-plan Multicas

Improve the Schedule /
~—

Transfer Files
Execute Tasks

Transfer Planning Algorithm

m When source nodes and destination nodes for
each file is given:

» Decide source node for each destinations by using
Kruskal's Algorithm

If multiple destinations uses one source, the data are
multicasted

» Calculate bandwidth value for each transfer to
maximize throughput by using linear programming

» |f the originally chosen source is not optimal, modify
the multicast tree by using a new bandwidth topology

Planing Multicast

Some nodes are unscheduled |

\/

Assign tasks to nodes \

Create Initial Task Schedule

(B) Plan Efficient Transfers

Transfer Elén Multicast
Planning Optimize Throughput
H Re-plan Multi t
Algorithm e-plan Multicas

| Improve the Schedule /
S~—

Transfer Files
Execute Tasks

Pipeline Multicast (1)

m For a given schedule, it iIs known which
nodes require which files

m \When multiple nodes need a common file,
pipeline multicast shortens transfer time
(in the case of large files)

m The speed of a pipeline broadcast is limited
by the narrowest link in the tree

m A broadcast can be sped up by efficiently
using multiple sources

Pipeline Multicast (2)

m The tree is constructed in depth-first manner

m Every related link is only used twice
(upward/downward)

m Since disk access Is as slow as network, the disk
access bandwidth should be also counted

Source

Multi-source Multicast

m M nodes have the same source data; N nodes need it
m For each link in the order of bandwidth:

» |f the link connects two nodes/switches which are
already connected to the source node:

— Discard the link
» Otherwise: — Adopt the link

(Kruskal's Algorithm: it maximizes the narrowest link in the pipelines)

Pipeline 1

- Do not use this link -
—1 1 —1 —1

Q00000 000000

Source Pipeline 2 pestination

Maximizing Throughput

Some nodes are unscheduled |

\/

Assign tasks to nodes \

Create Initial Task Schedule

(B) Plan Efficient Transfers

Transfer Ela.m Multicast
Planning Optimize Throughput
H Re-plan Multi t
Algorithm e-plan Multicas

| Improve the Schedule /
S~~—

Transfer Files
Execute Tasks

Maximizing Throughput

m After constructing multicast trees for every file,
decide the bandwidth each transfer uses

» By using linear programming
Maximize: (bwO + bwl + bw2 * 3 + bw3 * 2 + bw4)
Conditions: bwO0 + bwl < (const)
bwl + bw3 < (const)
bwO + bw2 + bw3 < (const)
For local data, use disk access cost as the bandwidth

bw1 30Mbps

bw4

Q00 000 QQ‘WSG\Q

Re-planning Multicast

Some nodes are unscheduled |

\/

Assign tasks to nodes \

Create Initial Task Schedule

(B) Plan Efficient Transfers

Transfer Ela.m Multicast
Planning Optimize Throughput
H Re-plan Multi t
Algorithm e-plan Multicas

| Improve the Schedule /
S~~—

Transfer Files
Execute Tasks

Re-planning Multicast

Now every transfer schedule is decided, but it may not be
optimal. Since multicast trees are planned independently,
unnecessary conflictions may occur.

By re-planning multicast by using current bandwidth

Information, the multicast trees are optimized

» When re-optimizing a transfer, first create an available bandwidth
map and construct multicast trees

New route

Improve Task Schedule

Some nodes are unscheduled |

\/

Assign tasks to nodes

Create Initial Task Schedule

Plan Efficient Transfers
Plan Multicast
Optimize Throughput ’
Re-plan Multicast
Improve the Schedule /

\/

Transfer Files
Execute Tasks

J

Improve Task Schedule

m After efficient data transfer plan has
obtained, the scheduler tries to reduce the
transfer size by altering the task schedule

m We are thinking of using GA or Simulated
Annealing. Since the most crowded link has
found, we can try to reduce transfers on

this link in the mutation phase.

Actual Transfers

m After the transfer schedule is determined,
the plan is performed as simulated

m The bandwidth of each transfer is limited to
the previously calculated value

m When detecting a significant change in
bandwidth, the schedule is reconstructed

» The bandwidth iIs measured by using existing
methods (eg. Nettimerlt])

[1] Kevin Lai et al. “"Measuring Link Bandwidths Using a Deterministic Model of Packet Delay"
SIGCOMM '00, Stockholm, Sweden.

@)

Re-scheduling Transfers

m \When one of the following events occurs,
bandwidth assignments are recalculated

» A transfer has finished

» Bandwitdth has changed
» New tasks are scheduled

bw4

Q00 000 QQ‘WSG\Q

Current Situation

m The algorithm has determined

m The implementation is ongoing

» Plan data transfers when topology and a task
schedule Is given

» Create a schedule with heuristics

» Perform the real file transfer and task
execution

m Evaluation will be done by comparing to
existing schedulers

Conclusion

m Introduced a new scheduling algorithm

» Predict transfer time by using network
topology, and search for a better task schedule

» Plan an efficient multicast

» Maximize throughput by linear programming
and by limiting bandwidth

» Dynamically re-scheduling transfers

Publications

Eiae, HBXE, AILE XL —2a a2XBIdNMESATST
2. B/ DEL/ BRI (CRAT I YUY —D -0 3 v T (RRI—FER)
(SWoPP2005) , #liff, 200548H.

Etes, HERXEA, mLE Y1 JL—2 3 2B IDDMESATST
I N, SRERNGTEERS RSO/ (SACSIS 2005) , K, 200545H8.

