
1

A distributed Task Scheduler
Optimizing Data Transfer Time
(データ転送時間を最適化する分散タスクスケジュラー)

Taura lab.

Kei Takahashi (56428)

2

Task Schedulers

 A system which distributes many serial

tasks onto available nodes

►Task assignments

►Data transfers

 Users can easily execute many serial tasks

in parallel on distributed environment

A

Scheduler

File

B C D

File File File File

Task Task Task Task Task

3

Data Intensive Applications

 A computation using a large amount of data

►Natural language processing, data mining, etc.

 Data transfer time takes considerable part of

the total processing time

►Example: parsing a set of data collected by

crawlers located in some hosts

• Typical network bandwidth: 1Gbps~50Mbps

• Throughput of Chasen parser: 1.7MB/s = 14Mbps

• In the worst case, the transfer takes 20% of the

total processing time
computation

computation

Transfer Time

4

Considering Transfer Cost

 GrADS[1] considers transfer time when

scheduling tasks

►Measure bandwidth between any two hosts

►Estimate transfer time by using the bandwidth

►Assign task based on the time

 Since they only use static bandwidth values,

their prediction can be far from the real

network behavior when multiple data

transfer share a link

[1] Mandal. et al. "Scheduling Strategies for Mapping Application Workflows onto the Grid“

in IEEEInternational Symposium on High Performance Distributed Computing (HPDC 2005)

5

Using Replicas
 Machida et. al[1] have developed a scheduler

which utilizes multiple replicas

►When data are copied from the source to another

node, the copied node is registered as a replica

►When another node requires the same data, the data

is copied from the nearest replicas

 In this work, a task schedule itself is not optimized.

Also, it does not care about the effect caused by

of link sharing of multiple transfers

[1]町田悠哉滝澤真一朗中田秀基松岡聡 ``レプリカ管理システムを利用したデータインテンシブ
アプリケーション向けスケジューリングシステム'‘ (HPCS2006)

File
File File

File File

6

Effects of Link Sharing
 If several transfers share a link, the sum of their

throughputs cannot exceed the link bandwidth

►throughput(File1) + throughput (File2)

<= (Link bandwidth)

 Bandwidth between two hosts varies when

multiple data are transferred

►The value is reduced in 25% if 4 transfers share a link

File1

File 2

File1

50Mbps

100Mbps 50Mbps

7

Considering Topology

 The throughput is limited by the narrowest link in

the transfer

 The throughput may become larger by altering

source of transfers or changing task assignment

Throughputs of the two

transfers are limited on this link

File 2 File1File1 Task1 Task2

File1 can be

transferred from

the other source

8

Research Purpose
 Design and implement an efficient

distributed task scheduler for data intensive

applications

►Minimize data transfer time by using network

topology and bandwidth information

• Create a schedule which needs less transfers

• Plan multicasts for data transfers

• Maximize throughput by using linear programming

9

Agenda

 Background

 Purpose

 Our Approach

►Task Scheduling Algorithm

►Transfer Planning Algorithm

 Conclusion

10

Input and Output
 Input:

►Data locations

►Network topology and bandwidth

►Task information (required data)

 Output:

►Task Scheduling:

• Assignment of nodes to tasks

►Transfer Scheduling:

• From/to which host data are transferred

• Limit bandwidth during the transfer if needed

 Final goal: Minimizing the total completion time

11

Immediate Goal
 Final goal: Minimizing the total completion time

 Our idea is to minimize data transfer time

 Immediate goal: Maximizing the total of data

arrival throughput on each node

))((
__ __

,
 nodeeveryfori fileeveryforj

jifilebandwidth

(filei, j : the j th file required by taski)

Maximize the total of these throughputs

12

The Whole Algorithm

Create Initial Task Schedule

Plan Efficient Transfers

Improve the Schedule

Plan Multicast

Optimize Throughput

Re-plan Multicast

Assign tasks to nodes

Some nodes are unscheduled

Transfer Files

Execute Tasks

(A) Task

Scheduling

Algorithm

(B)

Transfer

Planning

Algorithm

13

Task Scheduling Algorithm

Create Initial Task Schedule

Plan Efficient Transfers

Improve the Schedule

Plan Multicast

Optimize Throughput

Re-plan Multicast

Assign tasks to nodes

Some nodes are unscheduled

Transfer Files

Execute Tasks

(A) Task

Scheduling

Algorithm

14

Task Scheduling Algorithm

 When some nodes are unscheduled,

►Create candidate task schedules

►Plan efficient file transfers

• From which node file is transfered

• Bandwidth of each file transfer

►Search for the best schedule which maximizes

data transfer throughput

(by using heuristics like GA, SA)

 Decide the task schedule, and start file

transfers and task executions

15

Transfer Planning Algorithm

Create Initial Task Schedule

Plan Efficient Transfers

Improve the Schedule

Plan Multicast

Optimize Throughput

Re-plan Multicast

Assign tasks to nodes

Some nodes are unscheduled

Transfer Files

Execute Tasks

(B)

Transfer

Planning

Algorithm

16

Transfer Planning Algorithm

 When source nodes and destination nodes for

each file is given:

►Decide source node for each destinations by using

Kruskal's Algorithm

• If multiple destinations uses one source, the data are

multicasted

►Calculate bandwidth value for each transfer to

maximize throughput by using linear programming

►If the originally chosen source is not optimal, modify

the multicast tree by using a new bandwidth topology

17

Planing Multicast

Create Initial Task Schedule

Plan Efficient Transfers

Improve the Schedule

Plan Multicast

Optimize Throughput

Re-plan Multicast

Assign tasks to nodes

Some nodes are unscheduled

Transfer Files

Execute Tasks

(B)

Transfer

Planning

Algorithm

18

Pipeline Multicast (1)
 For a given schedule, it is known which

nodes require which files

 When multiple nodes need a common file,

pipeline multicast shortens transfer time

(in the case of large files)

 The speed of a pipeline broadcast is limited

by the narrowest link in the tree

 A broadcast can be sped up by efficiently

using multiple sources

19

Pipeline Multicast (2)
 The tree is constructed in depth-first manner

 Every related link is only used twice

(upward/downward)

 Since disk access is as slow as network, the disk

access bandwidth should be also counted

SourceDestination

20

Multi-source Multicast
 M nodes have the same source data; N nodes need it

 For each link in the order of bandwidth:

►If the link connects two nodes/switches which are

already connected to the source node:

→ Discard the link

►Otherwise: → Adopt the link

(Kruskal's Algorithm: it maximizes the narrowest link in the pipelines)

Do not use this link

Pipeline 1

Pipeline 2Source Destination

21

Maximizing Throughput

Create Initial Task Schedule

Plan Efficient Transfers

Improve the Schedule

Plan Multicast

Optimize Throughput

Re-plan Multicast

Assign tasks to nodes

Some nodes are unscheduled

Transfer Files

Execute Tasks

(B)

Transfer

Planning

Algorithm

22

Maximizing Throughput
 After constructing multicast trees for every file,

decide the bandwidth each transfer uses

►By using linear programming
• Maximize: (bw0 + bw1 + bw2 * 3 + bw3 * 2 + bw4)

• Conditions: bw0 + bw1 ≤ (const)

• bw1 + bw3 ≤ (const)

• bw0 + bw2 + bw3 ≤ (const)

• For local data, use disk access cost as the bandwidth

30Mbps

60Mbps

50Mbps

100Mbps

100Mbps

bw0

bw1

bw2

bw3

bw4

23

Re-planning Multicast

Create Initial Task Schedule

Plan Efficient Transfers

Improve the Schedule

Plan Multicast

Optimize Throughput

Re-plan Multicast

Assign tasks to nodes

Some nodes are unscheduled

Transfer Files

Execute Tasks

(B)

Transfer

Planning

Algorithm

24

Re-planning Multicast
 Now every transfer schedule is decided, but it may not be

optimal. Since multicast trees are planned independently,

unnecessary conflictions may occur.

 By re-planning multicast by using current bandwidth

information, the multicast trees are optimized

►When re-optimizing a transfer, first create an available bandwidth

map and construct multicast trees

Old

route

Pink links: available bandwidth

New route

25

Improve Task Schedule

Create Initial Task Schedule

Plan Efficient Transfers

Improve the Schedule

Plan Multicast

Optimize Throughput

Re-plan Multicast

Assign tasks to nodes

Some nodes are unscheduled

Transfer Files

Execute Tasks

26

Improve Task Schedule

 After efficient data transfer plan has

obtained, the scheduler tries to reduce the

transfer size by altering the task schedule

 We are thinking of using GA or Simulated

Annealing. Since the most crowded link has

found, we can try to reduce transfers on

this link in the mutation phase.

27

Actual Transfers

 After the transfer schedule is determined,

the plan is performed as simulated

 The bandwidth of each transfer is limited to

the previously calculated value

 When detecting a significant change in

bandwidth, the schedule is reconstructed

►The bandwidth is measured by using existing

methods (eg. Nettimer[1])

[1] Kevin Lai et al. ``Measuring Link Bandwidths Using a Deterministic Model of Packet Delay''

SIGCOMM '00, Stockholm, Sweden.

28

Re-scheduling Transfers

 When one of the following events occurs,

bandwidth assignments are recalculated

►A transfer has finished

►Bandwitdth has changed

►New tasks are scheduled

30Mbps

60Mbps

50Mbps

100Mbps

100Mbps

bw0

bw1

bw2

bw3

bw4

90Mbps

40Mbps

29

Current Situation

 The algorithm has determined

 The implementation is ongoing

►Plan data transfers when topology and a task

schedule is given

►Create a schedule with heuristics

►Perform the real file transfer and task

execution

 Evaluation will be done by comparing to

existing schedulers

30

Conclusion

 Introduced a new scheduling algorithm

►Predict transfer time by using network

topology, and search for a better task schedule

►Plan an efficient multicast

►Maximize throughput by linear programming

and by limiting bandwidth

►Dynamically re-scheduling transfers

31

Publications
 高橋慧, 田浦健次朗, 近山隆. マイグレーションを支援する分散集合オブジェ

クト．並列／分散／協調処理に関するサマーワークショップ (ポスター発表)
（SWoPP2005），武雄，2005年8月．

 高橋慧, 田浦健次朗, 近山隆. マイグレーションを支援する分散集合オブジェ
クト. 先進的計算基盤シンポジウム（SACSIS 2005），筑波，2005年5月．

