
A Stable Broadcast Algorithm

Kei Takahashi, Hideo Saito, Takeshi Shibata and Kenjiro Taura
The University of Tokyo

Email: {kay, h saito, shibata, tau}@logos.ic.i.u-tokyo.ac.jp

Abstract

Distributing large data to many nodes, known as a
broadcast or a multicast, is an important operation in par-
allel and distributed computing. Most previous broadcast
algorithms explicitly or implicitly try to deliver data to all
nodes in the same rate. This assumption is reasonable for
homogeneous environments where all nodes have similar
receiving capabilities. However, when nodes have various
receiving capabilities, nodes with slow-receiving capabili-
ties slow down the entire receiving bandwidth in these algo-
rithms. In such settings, each node desires to receive data
at its largest possible bandwidth and to start computation
as soon as it receives the data.

In this paper, we propose to say a broadcast is stable
when the bandwidth to a node is never sacrificed by the
presence of other, possibly slow, receiving nodes, and pro-
poses the stability as a desired property of broadcast al-
gorithms. In addition, we show a simple and efficient sta-
ble broadcast when the topology among nodes is a tree and
each link has a symmetric bandwidth. This work improves
upon previously proposed algorithms such as FPFR and
Balanced Multicasting. For general graphs, it outperforms
them when the network is heterogeneous and for trees, our
algorithm is proved to be stable and optimal.

In a real environment with 100 machines in 4 clusters,
our scheme achieved 2.1 to 2.6 times aggregate bandwidth
compared to the best result in the other algorithms. We
also demonstrated the stability by adding a slow node to
a broadcast. Some simulations also showed that our algo-
rithm also performs well in many bandwidth distributions.

1 Introduction

There are growing demands to effectively execute data
intensive applications in distributed, wide-area environ-
ments. Since data transfers occupy a considerable part of
the total processing time in the execution of such applica-
tions, efficient data transfer techniques are required.

One of the most common, practical transfer problems is
broadcast. In a broadcast, one or more source nodes have
data that need to be copied to some destination nodes. Var-
ious algorithms have been proposed to optimize broadcasts
according to completion time and aggregate bandwidth (the
sum of the bandwidths of all nodes) [1, 3, 4, 5, 6, 2].

Such existing broadcast algorithms have a few shortcom-
ings, especially for data intensive applications executed in
distributed, wide-area environments. One is that they are
not stable, in that the addition of a new node to an existing
broadcast can potentially lower the bandwidth of a node al-
ready participating in the broadcast. Another shortcoming
of existing broadcast algorithms is that they are not optimal
in terms of aggregate bandwidth. Even though many exist-
ing algorithms do optimize for aggregate bandwidth, they
do so under the assumption that all nodes have the same in-
coming bandwidth. As a result, they do not explore the pos-
sibility of different nodes receiving data at different rates,
missing the opportunity of having nodes that receive data
early start computation without waiting for other nodes. In
wide-area environments where link speeds can vary a great
amount, it is important to prevent nodes with narrow links
from slowing down other nodes.

In this paper, we propose a broadcast algorithm that uses
bandwidth-annotated topology information to optimize for
aggregate bandwidth. Our algorithm improves an existing
algorithm called FPFR [4], and performs broadcasts with
higher aggregate bandwidth than FPFR for any graph topol-
ogy. Moreover, for tree topologies, we prove that our algo-
rithm satisfies the following two properties:

• Stability: Adding a node to an existing broadcast does
not lower the incoming bandwidth of any node already
participating in the broadcast.

• Optimality: A broadcast performed using our algo-
rithm achieves the maximum possible aggregate in-
coming bandwidth.

While our algorithm works well with any graph topol-
ogy, we use tree topologies for simplicity in the exposition.
To evaluate our algorithm, we used the topology inference

1



tool developed by Shirai et al. [7] to obtain a tree topology,
and performed both simulations and real-machine experi-
ments.

The rest of this paper is organized as follows. In sec-
tion 2, some previous broadcast techniques are explained.
Our algorithm as well as proof of optimality and stability is
shown in Section 3. Section 4 depicts the experiments and
evaluation of our algorithm in the real environment, and we
conclude the paper in Section 5.

2 Related Work

In this section, we show some existing broadcast tech-
niques for large messages. Although much research has
been done to improve aggregate bandwidth, none has been
evaluated in terms of stability.

2.1 Topology-unaware Broadcast

The simplest broadcast algorithm is flat-tree, in which a
source node directly sends data to all the destinations. As
this algorithm does not perform well because of the bottle-
neck at the source, some broadcast algorithms have been
invented.

In FastReplica [1], the source splits data into small
pieces and sends each piece to a different destination.
Then, the destinations construct a ring connection, ex-
change pieces and finally obtain the whole data. While
the bottleneck at the source is solved in this method, con-
gestions are possibly induced by using the same link many
times. For example, when a certain link is used by N trans-
fers, the bandwidth is reduced to 1/N .

BitTorrent [6, 9] adaptively improve the transfer graph,
by changing the relaying network. First, data are divided
into small pieces so that each node is allowed to receive
them in an arbitrary order. Each mode randomly chooses its
parent to construct a transfer network to exchange pirces be-
tween them, and the parent is periodically changed. When
a node is chosen as a parent by more than five nodes, five
nodes that offers more bandwidth to other nodes are chosen.
As a result, nodes with a broad link are more likely to relay
data so that the aggregate bandwidth is increased.

MOB [2] improves BitTorrent for multi cluster environ-
ments. In MOB, chunks are not transferred through a global
link many times. Since it avoids transferred global network
many times, transfers become more efficient.

While these algorithms achieves good performance
when topology and bandwidth are unknown, the schedule
obtained by this algorithm cannot always avoid link shar-
ings. Since each node relays data to multiple (typically five)
nodes, the bandwidth may be diminished in these branches.
In addition, since it randomly changes the relaying struc-
ture, a good schedule is obtained only after long time.

Figure 1. Effect of adding slow nodes

2.2 Topology-aware Broadcast

Some methods obtain a good schedule from the begin-
ning by using network topology information. Karonis et al.
proposed to use a hierarchical tree that describes the real
network topology [5]. A broadcast is performed by tracing
the tree: a node relays data to all its children. While it can
avoid self-induced congestions, many branches in the relay-
ing plan diminish the aggregate bandwidth. If a node has N
children, these children can only receive 1/N bandwidth
each.

In a depth-first pipeline method [7], each node relays
data to only one node. Thie method constructs a pipeline by
tracing a topology in a depth-first manner. In this pipeline,
every node can receive as much bandwidth as the source
sends so the slowest node can receive the largest possible
bandwidth.

However, the depth-first pipeline cannot achieve good
performance in terms of aggregate bandwidth for a hetero-
geneous network. Figure 1 illustrates a situation in which
new node D3 with small bandwidth joins the broadcast.
One source S holds the original data, three destinations
D0, D1andD2 need them. The label on each link shows
the bidirectional bandwidth. Originally the aggregate band-
width of D0, D1 and D2 is 15. In the new pipeline, how-
ever, the aggregate bandwidth has dropped to 6. This de-
terioration can be avoided by concurrently using multiple
pipelines. In Multi-stream Pipeline in Figure 1, the aggre-
gate bandwidth is improved to 16.

Another approach uses Dijkstra method to construct a re-
laying structure [8]. In this method, two node sets are main-
tained: one is reachable-set, a set of nodes that are already
connected to the source, and another is unrechable-set, a
set of nodes that are not already connected to the source.
Based on bandwidth-annotated topology, one node that is
reachable with the largest bandwidth from the reachable-

2



set is selected and added to the reachable-set at a time. This
process is repeated until all the destinations are connected
to the source.

In this algorithm, fast nodes are more likely to be added
in earlier phases. As a result, adding a slow node to a
broadcast does not deteiorate aggregate bandwidth. How-
ever, this algorithm cannot avoid link sharings. Experi-
ments show that depth-first pipeline achieves larger aggre-
gate bandwidth in many settings [4].

2.3 Multistream Broadcast

The Fast Parallel File Replication (FPFR) tool [4] uses
bandwidth-annotated network topology information to per-
form efficient broadcasts. It iteratively constructs multiple
spanning trees, and uses them concurrently. By utilizing
available link bandwidth more effectively, FPFR achieves
higher aggregate bandwidth than methods that only use a
single stream.

Let the network topology and available bandwidth of
each link be given in advance. The first tree is built based
on the original bandwidth values. Several ways are tried
to construct spanning trees, and depth-first method, which
traces the destinations from the source in a depth-first man-
ner, achieved the best performance. After the first tree was
formed, the bandwidth value for the tree is subtracted from
the original bandwidth of all the links. The following trees
are repeatedly built with the subtracted bandwidth values
until no spanning tree can be created. These multiple span-
ning trees are concurrently used with the planned band-
width. Each tree sends different pieces of the file, and fi-
nally every destination receives the whole file.

FPFR has achieved better performance compared to a
method that uses only one tree. Balanced Multicasting [3]
has further improved FPFR by using linear programming
to maximize the aggregate bandwidth. However, we think
FPFR has problems with stability. Since FPFR only uses
spanning trees, a node with narrow bandwidth limits the ag-
gregate bandwidth of the other nodes. Especially in a case
of a tree topology, it only outputs one pipeline. Since the
throughput of a pipeline is limited by the narrowest link in
it, the stability is not achieved.

3 Algorithm

3.1 Basic Idea

Like many broadcast algorithms referred in section 2,
our algorithm takes as input a bandwidth-annotated network
topology, a single source node, and multiple destination
nodes. From this information, it generates transfer trees
labeled with its throughput (the bandwidth it consumes). In
this model, a set of transfer trees is said feasible when the

total throughput used on each link is within its capacity. In
practical terms, we model the problem assuming that each
switch has a sufficiently strong backplane so the transfer
rate is only limited by capacities of hosts or individual ports
of switches, not by internal switching capacities. In addi-
tion, we assume each link is full-duplex: link traffics in two
directions do not affect each other.

A broadcast algorithm is defined to be stable when
adding more nodes to destinations never decrease band-
widths delivered to the original nodes. Formally, for any
pair of destination sets D and E such that D ⊂ E, and for
any node n ∈ D, the bandwidth to n generated with desti-
nations E is never smaller than that generated with destina-
tions D.

We propose a broadcast algorithm which achieves more
aggregate bandwidth than FPFR and Balanced Multicast-
ing. Besides, the algorithm is shown to be stable and opti-
mal with respect to aggregate bandwidth when the network
satisfies the following conditions.

• The topology is a tree.

• Each link is bidirectional and has a symmetric capacity
in both directions.

While many multi-cluster environments and ISP’s networks
satisfy these conditions, some WAN environments do not.
However, some graph topologies are possibly approximated
to trees for a broadcast problem. For example, when a loop
exists in a WAN but it consists of links with larger band-
width than bandwidth of LAN links, we consider the loop
as one switch with large-enough backplane.

The basic idea of the algorithm is similar to FPFR and
Balanced Multicasting, in that it builds multiple transfer
trees and sends data fragments through them. The main
difference is that while FPFR stops building transfer trees
as soon as the narrowest link saturates, our algorithm con-
tinues to make partial trees that involve only a subset of the
destinations. Such trees play an important role to guaran-
tee that our algorithm is stable, or that a node connected to
the source with higher bandwidth will receive data with its
highest bandwidth. Transfer scheduling becomes slightly
more complex than FPFR to guarantee that all nodes re-
ceive all data despite that some transfer trees only contain a
subset of the destinations. Details are shown in Section 3.3.

3.2 Constructing Transfer Trees

The algorithm to create transfer trees is shown in Algo-
rithm 1. The network topology T is given in advance as
a directed graph, which consists of computational nodes as
leaf nodes and switches as intermediate nodes. Each link
is bidirectional and modeled as two separate edges of the
graph. In addition, the bandwidth (capacity) B0(e) is given
for each link e.

3



Algorithm 1 Constructing transfer trees
Require: T is a network topology. B0(e) is the bandwidth

for link e. s is the source node and D0 is a set of destina-
tions.
B := B0; T := ∅;
while TRUE do

t := the tree obtained by tracing destinations in depth-
first manner from s;
if t contains no destination then

break
end if
u := the bandwidth of the narrowest link in t;
T := T ∪ {⟨t, u⟩};
for each link e in t do

B(e) := B(e) − u;
end for

end while
return T

Algorithm 2 Sending data via transfer trees
Require: t1, . . . , tn are the transfer trees returned by the

construction algorithm (ti is made by the i-th iteration).
ui is the throughput of ti. D is the data to broadcast.
for k := n downto 1 do

R := data nodes in tk have not yet received;
send R through t1, . . . , tk, allocating to ti the amount
of data proportional to ui;

end for

Figure 2. The algorithm to build transfer trees

Figure 3. Execution of the broadcast

Like FPFR, the algorithm repeats building transfer trees.
The first tree is constructed by visiting all the destinations
from the source node in a depth-first manner. As a result,
it creates one tree that connects the source and all the desti-
nations. The throughput of this tree is set to the capacity of
the narrowest link in it.

After the first tree is obtained, bandwidth of each link is
updated for the construction of the next tree. The through-
put allocated to the first tree is subtracted from the original
lik bandwidth, and an edge is removed when its bandwidth
becomes zero.

The second tree is constructed with this reduced band-
width map using the same depth-first traversal. In this time,
it may not be possible to reach every destination from the
source as some edges have been removed. If that happens,
we connect only destinations reachable from the source. For
a tree network in particular, at least one node becomes un-
reachable. The throughput of the second tree is again set
to the capacity of its narrowest link, and is then subtracted
from each link used by the tree. We repeat this procedure
until no nodes become reachable from the source. Our al-
gorithm can also utilize multiple replicas by creating a set
of trees from each replica one by one.

Figure 2 illustrates a process to build transfer trees. One
source S and destinations D0 . . . D4 are engaged in this
broadcast. The first tree t1 connects all the destinations
D0 . . . D4, and its throughput is limited to 3 by the link
connected to D0. The second tree t2 is built after subtract-
ing the throughput 3 from each link used by the first tree.
Tree t2 connects D1 . . . D4 with the throughput of 2. After
the construction of the third and the fourth trees, the avail-
able bandwidth map does not allow to construct any transfer
from the source. Consequently, four trees are obtained.

4



Figure 4. Use a fast node as replica

3.3 Transfer Using Multiple Trees

Once the transfer trees have been constructed, data frag-
ments are sent through them. To achieve the claimed stabil-
ity and optimality, all the trees must be effectively utilized.
Algorithm 2 shows how the transfer is done.

Data are sent in n stages, with each stage using a differ-
ent set of transfer trees. Let ti be the transfer tree made
by the i-th iteration of the construction algorithm (i =
1, . . . , n) and N(t) be the set of destinations involved in tree
t. Note that the relation N(tn) ⊂ N(tn−1) ⊂ · · · ⊂ N(t1)
holds.

In the first stage, the entire data are partitioned into frag-
ments and sent using all transfer trees. Data must be al-
located to trees so that they finish the transfer at the same
time. In principle, this can be achieved by allocating to each
tree the amount of data proportional to its throughput. In
the actual implementation, we achieve this by dividing data
into small chunks, then allocating data dynamically to trees.
Each transfer edge is implemented by a TCP connection and
we send a chunk via a connection only when the connection
is writable (i.e., writing to it does not block). At the end of
the first stage, nodes in N(tn) will have obtained the entire
data and will not have to receive any more data. Other nodes
only get a part of the data; the remaining will be delivered
in later stages.

In the second stage, data, that the nodes in N(tn−1) have
just missed in the first stage (i.e., data sent through tn), are
sent by using t1, . . . , tn−1, with the same policy for allocat-
ing data to individual trees. The second stage will deliver
all the data to nodes involved in tn−1. Similarly in the third
stage, data that the nodes in N(tn−2) have not yet received
will be sent via t1, . . . , tn−2 so they will have all data in
the end of the stage. We repeat this sequence until all the
destination nodes receive all the data.

Although data are sent using multiple trees, the trees uti-
lize the same TCP connections. In addition, nodes will not
send any duplicate chunks that have already received by the
peer in the real implementation. Figure 3 illustrates how
the transfers are performed with trees constructed in the ex-

ample of Figure 2. The number written beside each arrow
shows the bandwidth of each flow. For example, node D1

receives bandwidth 3 from D0 and 4 from S. Data delivered
from D0 correspond to t1, and data from S corresponds to
t1 and t2. D1 receives the combined bandwidth 7, which
is the maximum possible bandwidth for D1 to receive data
from S.

Common practice has been to receive different chunks
from multiple replicas. For example, Figure 4(a) depicts
an attempt to improve incoming bandwidth to D0 by trans-
ferring data both from S and from D1. However, in a tree
topology whose links have the same bandwidth in both di-
rections, it is not possible to improve the incoming band-
width of remaining nodes by using these replicas. Fig-
ure 4(b) shows that in the real topology in Figure 3, the
bottleneck lies on the link connected to D0. Otherwise, D0

should have been included in the other trees such as t2 and
t3.

3.4 Stability and Optimality for Tree
Topologies

We show that the algorithm introduced in the Section 3
is stable and optimal in the sense of aggregate bandwidth
for a tree topology whose links have the same bandwidth in
two directions. The proof consists of three parts. First, we
show that we can treat each link as an undirected link dur-
ing tree construction. Then, we introduce some properties
about pipeline transfers, and finally, we prove that the set
of trees deliver to a node the maximum amount of data that
can be received by the node.

3.4.1 Preparation: Property from Symmetric Link

Basically, we need to treat each link as a directed link during
the construction of the trees. The bandwidths of the two
directed links on the same path are separately calculated,
and the link is added separately. However, when each link
has the same bandwidth in the two directions, we can treat
the two directed links as one link, whose bandwidth is given
by the smaller bandwidth of the two directional links. The
reason is shown as follows.

We have a tree topology that contains a source s and
some destinations. A bidirectional link e in the network
has two subtrees connected to both ends. Since the network
is a tree, the source node s is contained in either of the two
subtrees. Assume that the subtree T does not contain the
source node s.

The link e can be split into two directional links: one
heading for T and the other away from it. Let the term for-
ward link ef and backward link eb denote the former and
the latter link, respectively. This is shown in Figure 5(a). In
a tree network, the removal of e from the topology discon-

5



Figure 5. Links in a tree symmetric network

nects every node in T and s. Therefore, if ef is removed,
we can create no route from s to any node in T .

Assume that the backward link eb is adopted by a tree.
Since the tree uses eb, it has reached one of the destina-
tions in T . Without ef , we cannot create a route from s
to any node in T . Thus, when a tree contains eb, it also
employs the corresponding forward link ef . Therefore,
Bk(eb) − Bk−1(eb) ≤ Bk(ef ) − Bk−1(ef ) holds, where
Bk(e) denotes the available bandwidth used in the construc-
tion of the (k)th tree. Since B0(eb) = B0(ef ) holds from
the assumption, Bk(eb) ≤ Bk(ef ) is lead.

Since the bottleneck in the tree always lies on the for-
ward link, during the construction of the trees, we only need
to use the bandwidth of the forward link.

3.4.2 Properties for Single Transfer

For a tree topology, there is exactly one route that connects
two nodes a and b using the minimum number of links.
Let L(a, b) denote this set of links, which is shown in Fig-
ure 5(b). Since the removal of any link in L(a, b) from
the tree disconnects a and b, any route from a to b con-
tains all the links in L(a, b). Although some route may use
a link multiple times, the throughput is maximized when
each link in L(a, b) is only used once Let vk(a, b) denote
this throughput when the bandwidth is Bk:

vk(a, b) = min
e∈L(a,b)

(Bk(e)) (1)

With a set of links (L(a, b) ∪ L(b, c)), we can construct
a path from a to c via b. Therefore, the following relation
holds:

(L(a, b) ∪ L(b, c)) ⊃ L(a, c) (2)

Assume that we iteratively construct a total of n trees.
From the source s, a tree traces some destinations in a
depth-first path. Let Dk denote the set of destinations in-
cluded in the (k)th depth-first tree, and Pk denote the set of
links used in the (k)th tree.

Using the above notations, the following equations (3)
and (4) hold. Because the graph is a tree,

Pk =
∪

d∈Dk

L(s, d). (3)

Because the algorithm traces the path from s,

d ̸∈ Dk iff vk(s, d) = 0. (4)

3.4.3 Proof of Stability and Optimality

Let dk,0 . . . dk,n−1 denote the nodes in the destination
set Dk, which are ordered to satisfy vk(s, dk,i) ≤
vk(s, dk,i+1). Let uk denote the throughput of the tree Pk.
We get the following:

uk = min
e∈Pk

(Bk(e)) = min
1≤i≤n

(vk(s, dk,i)) = vk(s, dk,1). (5)

The following equation holds.

Dk+1 = Dk \ Ak, (6)

where Ak = {d ∈ Dk|vk(s, d) = vk(s, dk,1)}.

Proof. (Proof of (6))
From the definition of Bk,

Bk+1(e) =

{
Bk(e) − uk if e ∈ Pk,
Bk(e) otherwise.

Thus, from (4),

vk+1(s, d) =

{
vk(s, d) − uk if d ∈ Dk,
0 otherwise.

(7)

If d ∈ Ak, namely vk(s, d) = vk(s, dk,1), then
vk+1(s, d) = uk−uk = 0 from (5). If d ∈ Dk\Ak, namely
vk(s, d) > vk(s, dk,1), then vk+1(s, d) = vk(s, d) − uk >
0.

From (4), Dk+1 = {d ∈ D1|vk+1(s, d) ̸= 0} = Dk \
Ak.

From (6), a destination d in Ak receives data from the
(1)st to the (k)th trees. Let w(d) denote the total bandwidth
d receives from the trees, that is,

w(d) =
∑

1≤i≤k

uk. (8)

From (7), the following holds:

uk = vk(s, dk,1) = vk−1(s, dk,1) − uk−1

= v1(s, dk,1) −
∑

1≤i<k

ui.

Thus
v1(s, dk,1) =

∑
1≤i≤k

ui. (9)

From (8) and (9), we get the following:

∀d ∈ Ak, w(d) = v1(s, dk,1) (10)

6



This means that the trees deliver to d the same amount of
data as in the direct transfer from s to d in the condition
that there is no other traffic. From 1, this is the maximum
amount of data d can receive.

In addition, from the definition of Ak and (6), every des-
tination is included in one of A1, . . . , An, where n is the
number of the trees.

Consequently, it is proved that our trees deliver to a node
the maximum amount of data that can be received by the
node. It is also stable because the receiving bandwidth does
not depend on other destinations.

3.5 Improvement for Graph Topologies

In a graph topology, no algorithms can achieve both sta-
bility and optimality together. However, our broadcast algo-
rithm improves aggregate bandwidth than previously pro-
posed algorithm such as FPFR. While FPFR and Balanced
Multicasting create only spanning trees that connect all the
destinations, our algorithm constructs the same set of span-
ning trees and a set of partial trees that connect part of the
destinations. Since the partial trees use surplus bandwidth
that was not consumed by the spanning trees, the aggregate
bandwidth of our algorithm is never less than that of FPFR.
By using linear programming for these trees to optimize the
aggregate bandwidth, our algorithm also improves the ag-
gregate bandwidth of Balanced Multicasting.

4 Evaluation

We implemented the algorithm, and evaluated it in both
a simulation and a real environment. Five algorithms are
compared:

Ours: This is the algorithm we proposed. Multiple span-
ning and partial trees are iteratively constructed in a
depth-first manner, and transfers are performed by us-
ing them in parallel.

Depth-First (FPFR [4]-like): The algorithm constructs
multiple spanning trees in a depth-first manner [3, 4].

Dijkstra: This algorithm iteratively builds a tree in a
greedy manner. Pick one unreached destination that
can be reached in the maximum possible bandwidth
from reached nodes. The method is explained in [4],
and a similar method is proposed in [8].

Random Pipeline: This algorithm randomly creates a tree.
One node is randomly chosen from all the unreached
destinations at a time. A total of 100 candidates are
generated, and one with the largest aggregate band-
width is chosen.

Flat Tree: The source directly sends the data to all the des-
tinations.

Except for Flat-tree, every algorithm requires a
bandwidth-annotated topology.

4.1 Simulation

A simulator has been implemented to evaluate broadcast
algorithms. We make the throughputs of the machines and
switches large enough compared to the link bandwidths, so
that they do not become bottlenecks. We used a tree topol-
ogy with 400 nodes, taken from the real environment. Dur-
ing the experiment, three different bandwidth distributions
were tested:

Uniform Random: A uniform random value is assigned to
each link to see general behavior of these algorithms.
Both low-variance (from 500 to 1000) and high-
variance (from 100 to 1000) conditions are tested.

Mixed Fast and Slow Links: While 80% of the links has
1000Mbps bandwidth, the other 20% has 100Mbps
bandwidth. It describes a situation that fast and slow
devices are mixed.

Random Inter-Cluster: In this condition, inter-switch
links are assigned random distribution (from 100 to
1000).

The simulation is performed 10 times for the same algo-
rithm, bandwidth variance and number of destinations. For
each conditions, we tested two settings with each link: one
has the same bandwidth in two directions (symmetric), the
other does not (assymmetric).

The result is shown in Figure 6. The vertical axis shows
the relative aggregate bandwidth of the FlatTree algorithm.
Our algorithm took only 2 milliseconds to induce the sched-
ule. Our method achieved the best performance in every
symmetric condition. As shown in Figure 6(c), the im-
provement is especially notable when fast and slow links
are mixed. In this case, the performance of the other al-
gorithms is dropped because of the lack of stability. In an
asymmetric network, the performance of our algorithm is
the best except for one case, Figure 6(d). Even in this case,
the difference is only 3%. As a result, the superiority of our
algorithm is confirmed.

4.2 Real Machine Experiment

We also performed some experiments using a real ma-
chine environment. This environment had the tree topol-
ogy shown in Figure 8, with 105 nodes in 4 clusters. The
bandwidth of the links is also shown in Figure 8. We per-
formed broadcasts among 10, 47 and 105 nodes. Table 1

7



Figure 6. Aggregate bandwidth of each algorithm (Vertical axis: relative aggregate bandwidth
comapring to the FlatTree algorithm)

Figure 7. Real machine experiments

Table 1. Number of nodes in each clusters
Number of Destinations A B C D

105 59 9 35 2
47 30 1 16 1
10 6 1 2 1

shows the number of nodes from each cluster. Each condi-
tion was tested four times, and the best aggregate bandwidth
was taken.

Figure 7 illustrates the results. Since the environment is
heterogeneous, the performance was improved significantly
by our algorithm. The aggregate bandwidth increased by
2.1 to 2.6 times compared to the best result in the other al-

gorithms. However, the bandwidth was 30% to 45% worse
than the optimal value predicted by simulation. An inves-
tigation revealed that our assumption that each link is bidi-
rectional and thus has an independent (full-duplex) band-
width in each direction was subtly violated, because trans-
ferring data in both directions saturated CPUs. While each
node could send or receive 900Mbps independently, it could
only send and receive 750Mbps when it was simultaneously
sending and receiving. In the simulation, the link adjoining
such a node was modeled as having 900Mbps in each direc-
tion, but in reality each only had 750Mbps when it was used
to relay data.

To demonstrate the stability of our broadcast, another
test was performed. In this experiment, a node with small
bandwidth joined a 9-node broadcast. Figure 7 (d) shows

8



�

C

36 nodes

�

D

4 nodes

�

A

59 nodes

�

B

9 nodes

900Mbps
900Mbps 700Mbps

80Mbps

Bandwidth in a cluster: 900Mbps

Figure 8. The real environment topology

the change in the aggregate bandwidth of the older 9 nodes
for four broadcast algorithms. While the aggregate band-
width dropped to 52% in depth-first, which works the same
as FPFR for a tree, the deterioration in our algorithm was
only 2.5%. Although the drop in the other two algorithms
were also small, our algorithm yielded 1.5 times aggregate
bandwidth of them.

5 Conclusion

In this paper, we introduced the notion of stability in
broadcasts, and proposed a simple and efficient broadcast
for heterogeneous environments.

Our broadcast improves a previously proposed class of
broadcast algorithms that include FPFR and Balanced Mul-
ticasting, focusing on the fact that each node should receive
data as fast as possible and start computation without wait-
ing for other nodes. Like FPFR and Balanced Multicasting,
our broadcast achieves high bandwidth by forwarding data
along multiple spanning trees. In addition, our broadcast
avoids the effect of nodes with narrow bandwidth by for-
warding data along multiple partial trees. While the slow-
est node only receives data from the spanning trees, faster
nodes receive data both from the spanning trees and from
the partial trees.

For general graphs, our broadcast will always outper-
form FPFR and Balanced Multicasting, and for trees, we
proved that it is stable as well as optimal. In a real environ-
ment with 100 machines in 4 clusters, our scheme achieved
2.1 to 2.6 times aggregate bandwidth compared to the best
result in the other algorithms. We also demonstrated the
stability by adding a slow node to a broadcast. While the
aggregate bandwidth dropped to 52% in depth-first, which
works the same as FPFR for a tree, the deterioration in our
algorithm was only 2.5%. Some simulations also showed
that our algorithm also performs well in many bandwidth
distributions.

In the future, we would like to invent an algorithm
that maximizes aggregate bandwidth in arbitrary graph net-
works. Although no algorithm can achieve both stability

and optimality in a graph topology, it is still important to
deliver as much data as possible to each host in a broadcast,
in order to effectively execute data-intensive applications.

Another future work is about a method that can adap-
tively improve the transfer schedule. In a WAN environ-
ment, bandwidth sometimes fluctuates because of other traf-
fic. To cope with this fluctuation, we will utilize dynam-
ically measured bandwidth during a transfer, and plan the
transfer schedule again.

Acknowledgment

This project is partly supported by the Grant-for-Aid for
Scientific Research on Priority Areas from Society for the
Promotion of Science (JSPS).

References

[1] L. Cherkasova and J. Lee. FastReplica: Efficient Large
File Distribution within Content Delivery Networks. In 4th
USENIX Symposium on Internet Technologies and Systems
(USITS), Mar. 2003.

[2] M. den Burger and T. Kielmann. MOB: Zero-configuration,
High-throughput Multicasting for Grid Applications. In IEEE
International Symposium on High Performance Distributed
Computing (HPDC), pages 159–168, June 2007.

[3] M. den Burger, T. Kielmann, and H. E. Bal. Balanced Multi-
casting: High-throughput Communication for Grid Applica-
tions. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, Nov. 2005.

[4] R. Izmailov, S. Ganguly, and N. Tu. Fast Parallel File Repli-
cation in Data Grid. In Future of Grid Data Environments
Workshop (GGF-10), Mar. 2004.

[5] N. T. Karonis, B. R. de Supinski, W. G. I. Foster, E. Lusk, and
J. Bresnahan. Exploiting Hierarchy in Parallel Computer Net-
works to Optimize Collective Operation Performance. pages
377–384, May 2000.

[6] D. Qiu and R. Srikant. Modeling and Performance Analysis
of BitTorrent-Like Peer-to-Peer Networks. In Proceedings of
the ACM SIGCOMM 2004 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Commu-
nications, pages 367–378, Aug. 2004.

[7] T. Shirai, H. Saito, and K. Taura. A Fast Topology Inference
— A building block for network-aware parallel computing.
In Proceedings of the 16th IEEE International Symposium
on High Performance Distributed Computing (HPDC), pages
11–21, June 2007.

[8] R.-C. Wang, S.-L. Wu, and R.-S. Chang. A novel data
grid coherence protocol using pipeline-based aggressive copy
method. In GPC, pages 484–495, 2007.

[9] B. Wei, G. Fedak, and F. Cappello. Scheduling independent
tasks sharing large data distributed with bittorrent. In GRID
’05: Proceedings of the 6th IEEE/ACM International Work-
shop on Grid Computing, pages 219–226, Washington, DC,
USA, 2005. IEEE Computer Society.

9


